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Dear Tom:

Attached to this letter is the report of our first year's efforts under Grant No: N00014-93-1-

0763, entitled: "Stochastic Nonlinear Dynamics of Floating Structures". This work was carried out by

me and ONR Grant-supported Graduate Assistant, Patrick Bar-Avi. In addition, related work was

carried out by Ed Weinstein and me on the issue of solving for the moments of a system governed by

the Fokker-Planck equation.

Attached are the following documents:

1. Nonlinear Dynamics of an Articulated Tower in the Ocean, submitted for review and publication

to the Journal of Sound and Vibration

2. Nonlinear Dynamics of an Articulated Tower in the Ocean, submitted for review, presentation

and publication at the ASME Winter Annual Meeting

3. The van Kampen Expansion for the Fokker-Planck Equation of a Duffing Oscillator, accepted for

publication in Journal of Statistical Physics

4. The van Kampen Expansion for the Fokker-Planck Equation of a Duffing Oscillator Excited by

Colored Noise, accepted for publication in Journal of Statistical Physics

5. The van Kampen Expansion for a Linked Fokker-Planck Equation of a Duffing Oscillator Excited

by Colored Noise, submitted for review and publication in Journal of Statistical Physics.
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i.e AC •sence of our work on the offshore problem is embodied in document 1 above. Our approach to

the problem has been, and continues to be, based on an examination of the phyqics of the environment

znd its interaction with the structure. This allows us to proceed along a research path that best

examines the importance of each force component, each nonlinearity, and helps us decide which

terms in our analytical model can be ignored or must be retained. In addition, by going back and forth

between analytical model and simulation, we are able to estimate the loss in accuracy resulting from

any particular approximation.

It is in this manner that we have proceeded with the work you see before you on the

articulated tower. We have explored various behavior regimes, including a chaotic one and a friction

damping effect. Our main conclusion during this phase is that a simplified, classical nonlinear

oscillator model, such as the Duffing or the van der Pol, will not be representative of the highly

complex and nonlinear offshore fluid-structure interaction problem. Thus, the need to make a

connection between the physical world and the mathematics we choose to model it. We prefer a top-

down approach. It is always easier to a posteriori drop terms shown to be negligible than to add terms

required to better fit the behavior.

On the articulated tower, in the current, second, year of the grant, we are generalizing the

model to include effects such as current, and allowing the structure to move freely about its base

support hinge. Thus, transverse forces due to vortex shedding can be incorporated.

Our work on the van Kampen expansion of the Fokker-Planck also continues. The above three

manuscripts (3,4,5) focused on unforced motion about an equilibrium due to noise. This permitted us

to examine the method, and extend it to include colored noise models, and also to consider coupled

oscillator models, which have broad applicability in the physical sciences and engineering. Our

coupled model was of a Duffing coupled to a linear harmonic oscillator, with colored noise forcing.

These are being published in J. Stat. Phys., where the original papers by van Kampen were published.

Our next step is to consider particular forced cases for the above. As for all nonlinear oscillations,

each loading case requires specific considerations.

As usual, I would be pleased to visit you to provide you with more details, and you are

welcome here for a working visit.

Thank you for your interest in our work. Your support is appreciated. Best regards.

Sincerely yours,

Haym Benaroya

cc: Administrative Grants Officer WIC QUALMTY R EISPEOTED 3

Director, Naval Research Laboratory

DTICJ



Nonlinear Dynamics of an Articulated Tower in the Ocean

P. Bar-Avi and H. Benaroya

Department of Mechanical and Aerospace Engineering, Rutgers University
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June 1, 1994

Abstract

This paper presents studies on the response of an articulated tower in the ocean subjected to deterministic

and random wave loading. The tower is modeled as an upright rigid pendulum with a concentrated mass at

the top and having one angular degree of freedom about a hinge with coulomb damping. In the derivation of

the differential equation of motion, nonlinear terms due to geometric (large angle) and fluid forces (drag and

inertia) are included. The wave loading is derived using Morison's equation in which the velocity and acceleration

of the fluid are determined along the instantaneous position of the tower, causing the equation of motion to

be highly nonlinear. Furthermore, since the differential equation's coefficients are time-dependent (periodic),

parametric instability can occur depending on system parameters such as wave height and frequency, buoyancy,

and drag coefficient. The nonlinear differential equation is then solved numerically using 'ACSL' software. The

response of the tower to deterministic wave loading is investigated and a stability analysis is performed (resonance

and parametric instability). To solve the equation for random loading, the Pierson-Moskowitz power spectrum,

describing the wave height, is first transformed into an approximate time history using Borgman's method with fl

slight modification. The equation of motion is then solved, and the influence on the tower response of different

parameter values such as buoyancy, initial conditions and wave height and frequency, is investigated.

Key words Articulated, Dynamics, Random, Stability, Chaos St I
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1 Review and Proble )eflnition

Compliant platforms such as articulated towers are economically attractive for deep water conditions

because of their reduced structural weight compared to converntional platforms. The foundation of

the tower does not resist lateral forces due to wind, waves and currents; instead, restoring moments

are provided by a large buoyancy force, a set of guylines or a combinatior of both. These structures

have a fundamental frequency well below the w& - --r frequency. As a result of the relatively

large displacements, geometric nonlinearity is an irup -iit consideration in the analysis of such a

structure. The analysis and investigation of these kind of problems can be divided into two major

groups; deterministic and random wave and/or current loading. We briefly review work in this area

in the next two subsections.

1.1 Deterministic loading

Chakrabarti and Cotter (1979) [3] analyzed the motion of articulated tower. The tower is artic-

ulated by a universal joint having single degree of freedom. They assumed, linear waves, small

perturbations about an equilibrium position, linear drag force and that the wind current and wave

are colinear. Their resulting equation of motion is,

IP + B(tk) + DO + CiP = Moe'(0-a0, (1)

where I is the total moment of inertia including added mass, B(b) is the nonlinear drag term, Dt is

the structural damping, Cik is the restoring moment due to buoyancy and M0 is the wave moment.

An analytical solution is then compared to experimental results to show good agreement as long as

the system is inertia predominant, and not drag predominant.

In a later paper, Chakrabarti and Cotter (1980) [4] investigated transverse motion, the motion
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perpendicular to the horizontal velocity. The tower pivot is assumed to have two angular degrees

of freedom and is taken to be frictionless. It is also assumed that the motion is not coupled, so

the inline solution is obtained (the same as in the previous paper) from which the relative velocity

between the tower and the wave is obtained. The lift force (in the transverse direction) can then

be obtained and the linear equation of motion is solved analytically and compared to experimental

results. The comparison shows good agreement, especially when the drag terms are small.

Jain and Kirk (1981) [9] investigated the dynamic response of a double articulated offshore

structure to waves and current loading. They assumed four degrees of freedom, two angular for

each link. The equations of motion were derived using Lagrange equations. In deriving the equations

of motion the following assumptions were made: drag and inertia forces tangent to the tower are

negligible, and the wave and current velocities are evaluated at the upright position (small angles

assumption). The linearized equations were solved to find the natural frequencies of the system

and then numerically solved to find the response due to colinear and non-colinear current and wave

velocities. They found that when the wave and the current velocities are colinear, the response of

the top is sinusoidal, while for noncolinear velocities the response is a complex three dimensional

whirling oscillation.

Thompson et al. (1984) [161 investigated the motions of an articulated mooring tower. They

modeled the structure as a bilinear oscillator which consists of two linear oscillators having different

stiffnesses for each half cycle,

mi + ci + (ki,k 2 )x = Fosinwt, (2)

where kj, k2 are the stiffnesses for x > 0 and x < 0 respectively. The equation is solved numerically

for different spring ratios and, as expected, harmonic and subharmonic resonances appeared in the
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response. A comparison between the response and experimental results of a reduced-scale model

showed good agreement in the main phenomenon.

Choi and Lou (1991) [5] have investigated the behaviour of an articulated offshore platform. They

modeled it as an upright pendulum having one degree of freedom, with linear springs at the top

having different stiffnesses for positive and negative displacements (bilinear oscillator). The equation

of motion is simplified by expanding nonlinear terms into a power series and retaining only the first

two terms. They assumed that the combined drag and inertia moment is a harmonic function. The

discontinuity in the stiffness is assumed to be small, and thus replaced by an equivalent continuous

function using a least-squares method to get the following Duffing equation

I0 + ch + k 10 + k202 + k303 = M 0 cosWt, (3)

where kI, k2, k3 are spring constants depending on buoyancy, gravity and the mooring lines. The

equation of motion is solved analytically and numerically, and stability analysis is performed. The

analytical solution agrees very well with the numerical solution. The main results of their analysis

are that as damping decreases, jump phenomena and higher subharmonics occur, and chaotic motion

occurs only for large waves and near the first subharmonic (excitation frequency equals twice the

fundamental frequency); the system is very sensitive to initial conditions.

Seller and Niedzwecki (1992) [14] investigated the response of a multi-articulated tower in plan-

ner motion (upright multi-pendulum) to account for the tower flexibility. The restoring moments

(buoyancy and gravity) were taken as linear rotational springs between each link, although the

authors say that nonlinear springs are more adequate for this model. Each link is assumed to have

a different cross section and density. The equations of motion are derived using Lagrange's equa-

tions, in which the generalized coordinates are the angular deflections of each link. The equations
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p in matrix form are

[M]{0} + [K]{0} = [Q], (4)

where [M] is a mass matrix that includes the actual mass of the link and added mass terms, while

the stiffness matrix [K] includes buoyancy and gravity effects. Damping and drag forces are not

included in the model. The homogeneous equations for a tri-articulated tower are numerically

solved to study the effects of different parameters, such as link length, material density and spring

stiffness, on the natural frequency of the system.

Gotlib et al. (1992) [71 analyzed the nonlinear response of a single degree of freedom articulated

tower. In the derivation of the equation, the expressions for the buoyancy moment arm, added mass

term, and drag and inertia moments are evaluated along the stationary upright tower position and

not at the instantaneous position of the tower. The governing equation is of the form

S+ -y + R(O) = M(6, t), (5)

where R(O) = a sin 0 and a is linear function of buoyancy and gravity, M(0, t) is the drag moment.

Approximated harmonic and subharmonic solutions are derived using a finite Fourier series expan-

sion, and stability analysis is performed by a Lyapunov function approach. The solution shows a

jump phenomenon in primary and the secondary resonances.

1.2 Random loading

Muhuri and Gupta (1983) [12] investigated the stochastic stability of a buoyant platform. They

used a linear single degree of freedom model as follows

S+ + (1 + G(t))x = o, (6)
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where x is the displacement, c is the damping coefficient and G(t) is a stochastic time-dependent

function due to buoyancy. It is assumed that G(t) is a narrow-band random process with zero-mean.

A criterion for the mean square stability is obtained from which the following results are found: for

c > 1 the system is always stable, and for 0 < c < 1 there are regions of stability and instability.

Datta and Jain (1990) [6] investigated the response of an articulated tower to random wave

and wind forces. In the derivation of the single degree of freedom equation of motion the tower is

discretized into n elements having appropriate masses, volumes and areas lumped at the nodes, and

there is viscous damping. The equation of motion is,

1(1 + f(t))i + c + R(1 + v(t))O = F(t), (7)

where Ifi(t) is the time varying added mass term, Rv(t) is time varying buoyancy moment and F(t)

is the random force due to wave and wind. The Pierson-Moskowitz spectrum is assumed for the

wave height and Davenport's spectrum assumed for the wind velocity. The equation is solved in

the frequency domain using an iterative method, which requires that the deflection angle 0(t) and

the forcing function F(t) be decomposed into Fourier series: The coefficient of the sin and cos are

then found iteratively. From their parametric study, they concluded the following:

1. Nonlinearities such as large displacements and drag force do not influence the response when

only wind force is considered.

2. The random wind forces result in higher responses than do wave forces.

3. The r.m.s. response due only to wind forces varies in a linear fashion with the mean wind

velocity.

In a later paper, Jain and Datta (1991) [8] used the same equation and the same method of

solution to investigate the response due to random wave and current loading. The wave loadings
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(drag, inertia and buoyancy) are evaluated via numerical integration. The following results were

obtained from the parametric study,

1. The dynamic response is very small since its fundamental frequency is well below the wave's

fundamental frequency.

2. Nonlinear effects (drag force, variable buoyancy) have considerable influence on the response.

3. Current velocity has a large influence on the response.

Hanna et al. (1983) [15] analyzed the nonlinear dynamics of a guyed tower platform. The tower

is represented by a lumped parameter model consisting of discrete masses. Each mass has three

degrees of freedom, two translations and one rotation about the vertical axis. The external forces

on the structure are approximated by concentrated forces and torques at the nodal points. The

equation of motion is

[M]{Ifi} + [C]{i} + [K(u)]{u} = {P(t,u, it)}, (8)

where [M] is the total mass matrix including added mass terms, [C] is the structural damping

matrix assumed to be proportional to the mass matrix and [K(u)] is the total nonlinear stiffness

matrix that includes mooring lines effects, soil stiffness and geometric stiffness. {P(t, u, t!)I is the

nonlinear dynamic load vector due to wave, current and wind. The equation is then solved using

normal mode superposition and the response is calculated at each time step. This method is good

only if the nonlinearities are not large. Deterministic and random loading are considered. The

solution shows insignificant flexure modes while the torsional one has a noticeable effect on the

deck rotational response.

Kanegaonkar and Haldar (1988) [10] investigated the nonlinear random vibration of a guyed

tower. They included nonlinearities due to guylines stiffnesses, geometry, load and material. The
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simplified planner equation of motion is

IO + ci + KO + k1 O3 = M(t), (9)

where K is a spring constant depending on buoyancy, gravity and guyline horizontal stiffness, and

k, is a constant depending on the guyline vertical stiffness. M(t) is the random wave loading. The

equation is then solved numerically where the wave height is defined by the Pierson-Moskowitz

spectrum. It was seen that the response is non-Gaussian for significant wave heights greater than

5m.

Gerber and Engelbrecht (1993) investigated the response of an articulated mooring tower to

irregular seas. It is an extension of earlier work done by Thompson et al. (1984) [16]. The tower is

modeled as a bilinear oscillator, that is, a linear oscillator with different stiffnesses for positive and

negative deflections,

mi + ai + (ki,k 2)x = F(t). (10)

The random forcing function F(t) is assumed to be the sum of a large number of harmonic compo-

nents, each in different frequency, a procedure similar to that proposed by Borgman (1969) [2]. The

equation is then solved analytically since it is linear for each half cycle. The solution is obtained

for different cases; linear oscillator (both stiffnesses are the same), bilinear oscillator and for the

case of impact oscillator (a rigid cable) in which oscillation can occur only in one half of the cycle.

For future study they suggest to include nonlinear stiffness and/or using a different spectrum to

describe the wave height.
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1.3 Problem Definition

In this paper, the response of an articulated tower submerged in the ocean is investigated. The non-

linear differential equation of motion is derived, including nonlinearities due to geometry, coulomb

damping, drag force, added mass buoyancy. All forces/moments are evaluated analytically -.nd

explicitly at the instantaneous position of the tower and, therefore, they are time-dependent and

highly nonlinear. The equation is then numerically solved using 'ACSL' - Advanced Continuous

Simulation Language [1], a powerful software language for deterministic and random wave loading

using the Pierson-Moskowitz wave height spectrum. A harmonic and subharmonic solutions for

deterministic wave heights are obtained. The response to random wave heights for different signif-

icant wave heights is investigated, the influence of coulomb damping on the response is analyzed,

and chaotic regimes of behavior are identified.

The distinctions between this study and the literature with which we are aware are that,

1. A sound and exact derivation of the nonlinear equation of motion is provided.

2. All terms in the equation of motion are analytically derived.

3. Coulomb friction in the tower hinge is added.

4. Usage of 'ACSL' for the numerical solution provides an easy way to modify parameters and

sensitivity studies.
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2 Problem Description

A schematic of the structure is shown in Fig. 1. It consists of a tower submerged in a fluid having a

concentrated mass at the top and one degree of freedom 0 about the z axis. The tower is subjected

to wave loading. Two coordinate systems are used; one fixed (x,y,z) and the second attached to the

tower (x',y',z'). All forces/moment are derived in the fixed coordinate system, which means that

the tower rectilinear velocity is resolved into x, y coordinates. The motion of the tower is assumed

to be only in plane.

This problem has similarities to that of an inverted pendulum, but due to the presence of gravity

waves, additional considerations are made:

1. Forces due to buoyancy and vertical wave velocity are summed and denoted as To.

2. Drag forces proportional to the square of the relative velocity between the fluid and the tower

need to be considered.

3. Fluid inertia forces due to fluid acceleration are part of the loading environment.

4. Fluid added mass is directly included in the inertia forces.
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Figure 1: Model and Coordinate Frames

* 3 Equation of Motion

The equation of motion is derived using Newton's second law, setting all applied moments acting

* on the tower about hinge equal to the dynamic moment. We will find the equacion of motion to be

of the form,

J~g(O)]i - M [t,w, f(0),Bsgn(i)], (11)

where., J[g(O)] is the effective position-dependent moment of inertia, g(O) and f(O) are nonlinear

functions of 0 (trigonometric functions), w is the wave frequency, and E M is the sum of all external

moments that act on the tower. Certain assumptions have been made in deriving the nonlinear

equation of motion. These are listed below.
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* 3.1 Assumptions

1. The tower stiffness is infinite: E1 = 00.

* 2. The hinge has coulomb damping.

3. The tower has a uniform mass per unit length, m, and is of length 1 and diameter D.

* 4. The tower is a smooth slender structure with uniform cross section.

5. The end mass M is considered to be concentrated at the end of the tower. (It has no volume.)

6. The tower length is greater than the fluid depth, but the dynamics is not limited to the case

of the mass always being above the mean water level.

7. The structure is statically stable due to the buoyancy force.

8. The waves are linear having random height.

9. Morison's fluid force coefficients CD and CM are constant.

0
10. The center of mass (c.g.) of the tower is at its geometric center.

11. Currents, wind and wave slamming forces are not included.

0

3.2 Forces/Moments acting on the tower

Fig. 2 describes the external forces acting on the tower. These are:

0
1. To is a vertical buoyancy force.

2. F,, Fh are the vertical and horizontal fluid forces due to fluid drag and inertia.

3. Mg, mig are the forces due gravity.

We next describe these forces and moments.
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mig

Figure 2: External Forces on the Tower

3.2.1 Inertia Moment

The inertia moment equals the total moment of inertia of the tower multiplied by the angular

acceleration of the tower plus the fluid added mass term,

M, = (J 0 + M12)0 + Ml, (12)

where Jo is the moment of inertia of the tower about point 'o' and Mf1 is the fluid added mass

moment. The tower moment of inertia is

Jo = Im1 3 . (13)

The added mass force per unit length is

F1 , = C D2 . (14)Fy-CAP~r---V, (4
4

where CA is the added mass coefficient which equals CA - CM - 1, CM is the inertia coefficient

and V is the tower acceleration. In order to find the added mass term the tower's acceleration is

13



* derived by taking the second time-derivative of the tower radius vector in the x, y coordinate,

R = x'cos i+x'sin0•

= V = -x'0sin&0 + x'OcosO0* d-i

dV - y= -z'(0sin 0 + 2 cosO)i + x'(0 cos0 - 02 sinO)j. (15)

Replacing x' = we find

R = x&+xtanO•

V = -Xitan0i+x0i

* V = -x(etan0+0 2)i+x( - 2 tan0)i (16)

and the fluid added mass moment is

• I = JR x Ffldx. (17)

Substituting the expression for V in Ff1 and evaluating the cross product yields,

M, = CAPnrL2 X 2(1 + tan2 e)dx] , (18)

where L is the projection, in the z direction, of the submerged part of the tower, and is quantified

later. Thus, the fluid added mass moment is

1 D2 2
MfJ = 1 CApvr-L 3 (1 + tan2 0)0, (19)

and, assuming that the fluid added mass due to the end mass is negligible, the total inertia moment

is

MI = Jeff , (20)

where Jqjf, the total moment of inertia, is

J1  M = 3(m/+ M)12 + ICApI-rLL3(1 + tan20). (21)
3 4
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* 3.2.2 Moments due to Gravity and Buoyancy

The following moment is due to terms that do not depend on the fluid velocity, such as gravity and

buoyancy forces,
1

4= T0 - (M + m-)gl sin 0, (22)
2

where g is the gravitational constant, To is the time dependent buoyancy force and 4 is its m

arm;

To =pgVo (23)

where V0 is the volume of the submerged part of the tower. Assuming that D << d we find

D2

TO = pgr--D2 La, (24)
4

and La, which is the length of the submerged part of the tower, is

L. = d + (yt) (25)

d is the mean water level, p is the fluid density, 17(y, t) is the wave height elevation given by

1i7(x, t) = ýHco oy t + c), (26)

where

W -= gk tanh(kd) (27)

H is the wave height, w is the wave frequency, and k is the wave number. Since we are interested

in 7 at the instantaneous position of the tower and at x = d with y = dtan 0,

-q(O,t) = H cos(kdtan 0-wt + e). (28)
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The buoyant force acts at the center of mass of the submerged part of the tower. If we consider the

tower to be of cylindrical cross-section then the center of mass in X', y' coordinates is

D 2
*1Ltan 2 0

-= L0 + D 2tan 2e. (29)

Transforming to z, y coordinates we ?nd

16 = Pb'cos0+1" sin0
1)2 1 1D2

4 - D tan2 2cosO+ IL. + D tan2 0 sin 0. (30)
*16L. 2 12 L.

3.2.3 Morison's Equation for Wave Force

In general, the fluid forces acting on a slender tower are of two types: drag and inertia. The drag

force is proportional to the square of the relative velocity between the fluid and the tower, and the

inertia force is proportional to the fluid acceleration. The drag and inertia forces per unit length

are approximated by Morison's equation,
1) 1)2.

Ff1 = CDP-T I U- V t(U- V) + CMpr4 , (31)

where Ff, is the fluid force per unit length, and U, V are the fluid and tower absolute velocities,

respectively. In order to find the moments due to the fluid forces, the fluid and tower absolute

velocities are divided into two components: u in the z direction, w in the y direction. Then the

horizontal and vertical forces are evaluated.

Assuming a linear deterministic wave field initially, the horizontal and vertical fluid velocities

are respectively (Wilson [17] pp. 84) :

1, cosh kz
it =_ IHw cs xcos(ky - wt)

2 sinh kd
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*1 _sinh kz
w = -Hw sin(ky - wt), (32)

2 sinh kd

and the respective accelerations:

* 1 2 cosh kx sin(ky - wt)
2 sinh kd

1_ 2 sinh kz
1= -- 11 n w i cos(ky -wt). (33)W -2 H sinh kd (3

To evaluate the fluid forces, the velocities and accelerations have to be defined along the tower.

Substituting this expression for y = x tan 0 in equation (32) yields the fluid horizontal and vertical

velocities along the tower,

1 _cosh kx
U = I H osinh k cos(kx tan 0 - wt)

1 _sinh kd

W = 1 •w sinh k sin(kx tan0 - wt). (34)

Fig. 3 depicts sample velocity profiles of the fluid and the tower (equation (16)) along the tower

length. The velocities are time dependent and in the figure they are shown at a particular instant

of time. -

............ :• .......... .. ..... ...... ........... ..... ..... ........... ý-" . ......

S......i...... f 7 . ,a0 .... . ..... -:...... ... -.. ... ....... -.....-.-• • ..... .... ! . ..

. ... ... ........ ......... .. .i .. ..... ....... ..0 4 42 41 0 tI1U 13 14

Figure 3: Tower enid Fluid Velocity Profiles (Solid Line =Fluid, Dashed Line= Tower)
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Taking the derivative of the velocities with respect to time, noticing that 0 is time dependent,

leads to the accelerations

1 Hw( 0 ' j x cosh kx sin(kx tan 0-wt)
ii = -cos0 ) sinh kd

w0 = sinh kx cos(kx tan 0 - wt). (35)tb = • Hw -w +cos20 sin-hkd t).()

The moments due to the fluid velocity and acceleration are as follows. The inertia moments are

Mth = CMP~rD-• IL jzXdX

M1 , = CM Pf- Ltx tan Odx, (36)

and the drag moments are given by

MDh = CDP U -V ,I (u - v)xdx

MDV = CDPEj w -vx I(w - v)xtanOdx. (37)

where M1,4, M1 ,, are the inertia moments and MDh, Mi>, are the drag moments due to horizontal

and vertical accelerations, respectively. The moment arm for the vertical force is y = x tan 0. L,

which is the upper limit of the integral, depends on the angle 0 as follows:

IcosO ifd>lcos0
L = 1(38)

d if d < lcosO.

This means that the moments are calculated only for the submerged part of the tower.

Substituting the velocities (34) and accelerations (35) into the moment equations yields the

inertia moments

MI'k= CP~r2!,L rHw (.w + ~iL\ coshlcx sin(kz tan 8- wt)l xcix
4 = CMP-T 0 ) sinh kd

S=CMP L [1 WT + 6 sinh kxc kx tan - wt) x tan Odx, (39)
M4,, = 2p - 2 - + sinh kd cos(



and the drag moments

MDh = CDP- (!L Hw cosh c(k kxtanO-t) - x xdx
2 JL ( 2  snh

MD. = CDP2 R L (HWs-nh-sin(kxtanz-wt)+xitan0 xtanOdx. (40)

The direction of the drag moment depends on the sign of the relative velocity between the fluid

and the tower. In equation (40), it is assumed that this velocity is positive. When solving the

governing nonlinear differential equation numerically, the relative velocity must be evaluated for

each time step to determine that sign.

The integrals in equations (39) and (40) are very complicated to evaluate analytically. Although

this work is concerned with large angles, we are interested in examining the limitations of the 'small

angle' assumption. To do this, analytic expressions for the above integrals are evaluated using

'MAPLE' about y = 0, and compared with numerical integrations. This exercise shows that this

assumption is very good and the error for 0 _< 300 is less the 1 %. Thus, we have at our disposal

accurate analytical approximations.

Substituting (34), (35) into the moment formulas and integrating leads to the inertia and drag

moments, respectively,

D2  82 {f(_klLekL 2 +kL ekL 2 +~ck)

MIh = CMP1- D 2'B (kW +- + W+1 - 2ekL)W

(2e e 2 - 2 UekL -U2  2kL + k2L 2ek - k2kL 2)}+ cos2 0

(41)

I • --D2 B1 tan 0f ( eLekL2 -cU+ kL2 1w
S= CMP"r•TL -kLlc2L -

(2 e•kL 2 + 2 - 2 kLekL2 + 2 kL + kl2L2ekL 2 + k2L2 - 4 ekL) U
+ cs2 0

19



Moh = CDP Op + ( (-k+2k2L)ekL2 +2k+4k 3L2 +-2k2L--•'kB, 2

M2 4 CP 16k V 16k V 16 k3ekL )
+ ((32 kL-32 -16k 2 L2 )e ekL 1 32U+ a32+16k2 L2 0B,

\116v + 16 k3ekLj

(42)

MDV = D P je2tanqeL4 _((-k + 2k2L) ekL2 V2 k -4 k3 L2  -2 k2L -k) B2
2 tan 0

C 2P 4 16k + 16k3  + 16 k3ekL2 )

+ ((32kL - 32-16k2 L2 )ekL 4 -16k 2L2 _ 32kL- 32) tan2 0 B2,

where B1 , B2 are defined as:

1. cos(wt)
2 sinh(kd)

B 2  1 -Hw sin(wt)
2 sinh(kd).

The drag moment's direction is opposite to the relative velocity between the fluid and the tower.

Since this velocity depends on depth (z axis) and may have different signs along the length, we

will find its average, and the sign of the average relative velocity will determine the direction of the

resultant drag moment.

The general expression for the average relative velocity is given by:

1 L
V -f = (U- V)dx. (44)

We have to evaluate the horizontal 1T.eI and vertical V-eI relative velocities. Thus, we have

V~I = 1IjL (1 ~coshkx co(kx tan 0- wt) - xidx, (45)V-0 = 2H sinh kdco

and after integrating we get

V',, - teL 1Hw cos2 0
62 kLih(kd) {sinh(kL)cos(kLtanO -wt)

+ cosh(kL)tan 0 sin(kL tan 0 - w t) + 2 tan 0 sin(w t)}.
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Similarly

Z 1 2L "1H sinh kx sin(kx tan 0 - wt) + x6 tan O) dx, (46)

and after integrating

0 LtanO 0 Hwcos2 0

2 + kL sinh(kd) {- sinh(kL) tan 0 cos(kL tan 0- w t)

+ cosh(kL) sin(kL tanO - w t) + 2 sin(w t)}.

When we subsequently solve the equation of motion numerically, we will check the sign of the

relative velocities to set the correct direction of the drag moments and also to check the sign of

(d - I cos 0) to set the limits of integration.

3.2.4 Damping Moment

The tower hinge is assumed to dissipate energy via coulomb friction. In this section, this fric-

tion/damping moment is evaluated. The damping force is equal to the product of the normal force

N and the coefficient of friction u. It is assumed to be independent of the velocity, once the motion

is initiated. Since the sign of the damping force is always opposite to that of the velocity, the

differential equation of motion for each sign is valid only for a half cycle interval. The friction force

is

F1 , = Nu[sgn(O)]. (47)

The normal force is

N = ZFzcosO+ ZF,,sin 0, (48)

where E F,, E F, are the total forces in the x, y directions, respectively. These forces are due to

gravity, buoyancy and fluid drag and inertia,

= To-F 9 +F,+FD,,
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F, = Fit, + Fh, (49)

where To is the buoyancy force given in equation (24), F, is the gravitational force,

F, = (ml + M)g, (50)

and FDI, FD., F11, FI,, are the fluid drag and inertia forces in the horizontal (y) and vertical (x)

directions, respectively. These forces are calculated using Morison's equation in a similar way as

the moments and are given by,

CDP D L3O + ((kL+1) L _ + U B + e L 1 2)

Fh - 3 V T2 k+ekL B) t (n- 8k + 2 8kekL2) B1

D.= CDp { 21L3j2 tan2 a + Uk - i)ekL + U+ 1) B2 (tn0+ekL2 
-L 1 kk2 B22}

D2r(ekU2 kUL-kL -ekL2 1 k-2\ k (ek-L2 _1) W
Fjh = CMPT 7 1- 2 k2ekL + k-)cos2 8 2ekLk B 2}

F, CmirD 2((e LkLL +U- ekL2'l + k (ekL +l1)• W k ') Bi (1
F 4 1-- 2 k2ekL C O2 - 2"ekLk k BA.

If we assume a hinge radius Rh, then the damping moment is

Mf Rh (E FcosO + 1 F, sin 8) s[sgn(O)]. (52)

Finally, adding all the external moments, equations (22), (41), (42), (52), and setting them equal

to the total inertia moment, equation (20), yields the governing nonlinear differential equation of

motion,

JeffO = -Mfr - Mg + MIh - MI , + MDh - MD , . (53)

Both sides of this equation are nonlinear functions of 0, 0, t and w:

Jt(O)a = -Mf,(O,w,t,sgn(O))- Mg(O,w,t) + MIh(O,OW,t)-

Mj(,O,(9,9,t) + MDh(i,W, t) - MD ,(O,OW,,t), (54)
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which agrees with the general form of equation (11).

4 Numerical Solution

The numerical solution for the nonlinear differential equation (53) was performed using 'ACSL'

and the analyses of the results was performed using 'MATLAB'. The 'ACSL' code written for this

application is available upon request. In order to build confidence in the solution, some test cases

have been solved using the following physical parameters:

Tower properties

1. 1 - Length of the tower = 400 (m)

2. D - Tower diameter = 15 (m)

3. M - End mass = 2.5 • 103 (Kg)

4. m - Tower mass per unit length - 2 10P (-f)

5. p - Friction coefficient = 0.1-0.4

6. Rh - Hinge radius = 1.5 (m)

Fluid properties

1. d - Mean water level = 350 (m)

2. CD - Drag coefficient =0.6 - 1.0

3. Cm - Inertia Coefficient =1.5

4. p - Water density = 1025 (Nf)

5. w - Wave frequency - 0.2 - 1.0 (•)
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4.1 Response for Deterministic Wave Heights

In this section the response of the tower to deterministic wave heights is established. Free vibration

and stability analyses are performed.

First, the natural frequency of the tower is found as if it was an upright pendulum subjected

to a constant tension force To and gravitational force M.. Fig. 4 shows the tower response to an

impulse for CD = 0 and H = 0 in the time and frequency domain. The response is harmonic in

the tower natural frequency ft,, = 0.026 (Hz), and it agrees with the calculation for the natural

frequency of a pendulum :

1n 1 T64 - (0.5mt + M)gl (55)

Th DomAM A a I (a)

100 A;A A A i

Fnmm squ DaM s nib)

10, 1000"l 30 30 40 60

0 O.B M0.1 01s 0' 0

Figure 4: Tower Natural Frequency, Cp = 0
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Fig 5 (a,b) shows the same but for i = 0 and CD = 1, the decay here is not linear since the

drag force is propotional to the velocity squared. Fig 5 (c,d) shows the free vibration with frictional

damping, p = 0.1, in the time and frequency domain. Here the amplitude decays linearly with

time as expected when coulomb damping is present. From the figure we can evaluate the equivalent

damping ratio for CD = 0 to be ý = 0.02. Since the damping is nonlinear, the 'natural frequency'

and its multipliers are seen in the figure.

Te Do* n Re•spne (a) Tue Doman Rpo (c)

0. 
0.1

0 0

0 200 400 600 0 200 400 600
"Tm (mc) TM (eec)

Frequency Domin Response )) FmquMcy Domn Respone (d)

1 .210" 
1'vi

10 a

l U 
i 1 0 " . _ _ _ _ _

10 0 0.1 02 03 0)" 0.1 0.2 0.3
Feqn (Hz)) Fm y (Hz))

Figure 5: Tower Free Vibration with Damping, (a, b) p = 0.1, (c, d) CD = 1

25



0

* Fig. 6 shows the response in the time domain and frequency domain for H = 1 (in) and wave

loading frequency w = 0.064 (Hz). Figures (a, b) are with u = 0 and (c, d) are with p = 0.4. In the

frequency domain, the tower 'natural frequency' and the wave natural frequency are clearly seen.

It can be seea that the friction has a damping and stabilizing effect on the system.

x le Tim Dom (a) X4 l Tim Dwmi (c)
4 4

. 2 2

0 I
O 02

* 1-2

-414
0 200 40 600 0' 200 4 600

Tne (mC) Tois (MC)

Fm~wque Dasuhn (b) Freque~ Damk, (d)

10, 10"
Is10  vie

0 0.1 0ý 03 0 0.1 0ý 0U
Frequen (Hz)) FmWy (H4))

Figure 6: Tower response to wave excitation, Time and Frequency Domain, H I (m)
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Since this is a nonlinear system, its response to harmonic excitation at the system's 'natural

frequency' or its multipliers can be multivalued, indicating the occurrence of a 'jump'. Fig. 7 shows

the tower response to harmonic wave excitation at w = fl,, (harmonic solution) with and without

damping. If the system was linear, such loading would have caused resonance instability. But since

the system is nonlinear, an amplitude change (beating) can be seen Fig. 7 (a), indicating that

'jumps' occur from one amplitude to the other (Wilson [17] pp. 147). It can also be seen that

although the excitation frequency is constant, the frequency response is not Fig. 7 (b). Again the

reason is the nonlinear system characteristics. From the response with friction (figures (c, d)) we

see that the response is not smaller since it is unstable, but the ratio between the large and small

amplitude of the beating gets smaller.

Tmh Ca& A-s r.m Dmiub m A F

0 a

10 - 1m0 0 "0,is 0 100 iao0

Fwmw" t FR im (b) Fmrauny am D am , (1

10" 10

I le
110" 110

110 110'A

0 0.1 0.2 3 0 0.1 0.2 0.3Ffq, yIUL(14Z)) F~q~)

Figure 7: Tower response to harmonic wave excitation at the 'Natural Frequency' - Beating Phenomenon
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Fig. 8 shows the response due to harmonic wave excitation at twice the system 'natural fre-

quency' (sub-harmonic solution), with (c, d) and without friction (a, b). We can see the beating

phenomenon, and from the frequency domain we see that the response consists of the 'natural

frequency'and it multipliers. This is due to the nonlinear nature of the system.

Tmwo D=&i RWn (a) Tm Dnt* Romu (c)

10s 10.5
oC 0

1 10

0 0.1 02 03 0 0.1 02 03
FTney (Hz)) Fm y(Hz))

Figure 8: Tower response to sub-harmonic wave excitation at twice 'Natural Frequency'
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* The direction of the drag force is opposite to the direction of the relative velocity between the

tower and the wave. If the direction of the relative velocity is the same as the tower velocity, the drag

will always stabilize the system. The reason is that the drag moment will always be opposite to the

direction of the deflection angle 0. But if the relative velocity direction is opposite to tower velocity,

the drag moment can cause instability. For zero wave velocity the drag force always stabilizes the

* system, as can be seen from Fig. 5. Fig. 9 describes the horizontal and vertical components of the

relative velocity and tower velocity.

* (a) '02 (C)

_0.1 0.1

00 0

0

50 100 150 .020  so 100 150
TMe (8c) ThM (9c)

0.1.
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* Figure 9: Relative and Tower Velocities - (a, c) Horizontal and (b, d) Vertical
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* 4.1.1 Chaotic Response

Because of the nonlinear characteristics of the system, the governing differential equation of motion,

chaotic motion can occure under certain conditions. Fig. 10 shows the response of the tower to a

harmonic wave excitation at a frequency w = 0.95fl,. We see that the response 'jumps' between

two stable equilibrium states. This phenomenon can imply a chaotic system.

Tim Wkn R~xm (a)
2•

0.

.1, 10,0 20OO 30,0 400 S0 M 0

FmTq Donm "uprms (a)

Co4

b..-

10tp I I I

0 1.00 0.1 0.15 02 025
FmqERup (Hz))

Figure 10: Tower response to harmionic wave excitation at the 'Natural Frequency', CD) 0.6
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Moon [11] provides several ways to identify chaotic vibrations. We next use three ways to prove

that the system under consideration is chaotic. Fig. 11 describes the response of the tower to a

harmonic wave excitation having a frequency of w = 0.09 (Hz). Fig 11 (a, b) shows the response

in the time and frequency domains and the phase-plane trajectory (c). From the time history it is

clearly seen that the system jumps between two stable equilibrium states. The frequency domain

shows multiharmonic energy although the system has one degree of freedom; another indicator of

chaos. Finally, from the phase-plane trajectory we see that the orbits never close or repeat. Thus,

we conclude that this model has the characteristics of a chaotic system. This chaotic phenomenon

appeared only when the wave height was larger than 10 (m).

* 10

84

to 100 200 300 400 500 600

S~~~10" ..

i _ ___ __ __ __ __ __ __ __ __ __ __ __ __ __

0'" 0.6 0.1 05 0. z

5t .4 -05 0 o.5 1
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Figure 11: Tower response to a harmonic wave excitation, w - 0.09 (H/z) - Chaos
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4.2 Random Wave Height

In this section the tower response to random wave height excitation is investigated. The wave

height distribution is generally expressed in the form of a power spectral density. For a simulation

of the response in the time domain, the power spectra of the wave height is transformed into a time

history. This is accomplished using a method by Borgman [21, described in Wilson's book [17], and

presented here.

4L2.1 Synthesis of Time Histories from Power Spectra

The wave elevation (x, t) can be expressed as

17X i) = ~ cos(kx - Wt + e A2Wd,(56)

where A 2(w) is the amplitude spectrum (height) and e is a random phase angle having a uniform

distribution over an interval 0 to 2r. To evaluate the integral, the spectrum is discretized into equal

areas (not equal frequencies). This procedure avoids the presence of periodicities in the resulting

time history. Consider the following partition ;

W•O < W < W2 < .... <• 3N = F, (57)

where wo is a small positive value and F is the frequency above which the spectral amplitude is

practically zero. Let

Awn = Wn - W.- 1  (58)
WI1 -- WI-

=. = ; n = 1,2,...N, (59)
2
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where N is the number of partitions of the spectra. Now the integral can be approximated as a

sum,
N

,(X, t) = • cos(kX - 4,,t + 6.)rA(. (60)
n=1

where &' = kng and () represents the average of each parameter. Let S(w,) represent the cumulative

area under the spectral density curve, or

N

S(wn) = E A2(W)AW.. (61)

Thus,

A2(.)AWf,. Ps S(w.) - S(w,_,i) = a2, (62)

where a2 is a constant to be determined. It follows that

Na2 = S(WN) s S(oo) = jo °A 2(w)dw. (63)

The Pierson-Moskowitz spectrum for the wave height is

SI(w) = A2(W) -e-Bw'4 (64)

where Ao and B axe constants defined by

A0 = 8.1 x 10-3 g2  (65)

B 3.11B=H.

Then, from equations (61) and (64),

S(w) = 40 _-B/.4 (66)

and, therefore,

S(oo) = 4o (67)4B

a2 = Ao (68)
4BN3
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Now the partition frequencies can be determined for w = F,

__ = e BI S(F). (69)4B

Because the partition is of equal areas

S(w.) =.•S(F) = =O4B/w' = S(F)eB/F&E-/wI, (70)
N 4B

it follows that

NeBI_ (71)
n

Solving equation (71) for w,, leads to the partition frequencies

S= (BIF 0.' n =1,2,...N. (72)

Therefore, the wave elevation vq(z, t) can be approximated by

N

(z,t) = a L cos(knz - wnt + e,). (73)
ni=1

The wave loading on the tower is a function of wave velocity and acceleration. Therefore, in

our numerical studies, these have to be expressed as functions of the approximate wave elevation.

Thus, in the expressions for wave velocity and acceleration, the following substitutions are made

H A0  (4
4IBN (4

SWI1

k = k,

where n = 1,2, ...N. For example, the horizontal velocity and acceleration will become

U N Ao cosh knd cos(knx tan 0 - wrt) (75)F1B -- ••"-"Wn sinh knd

N"=1

= N Ao•. (-Wn + "k-- ) -coshx sin(knxtanO - wt).

A =B-j NWR Ce 29) sinh 13d
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As mentioned earlier, the wave height is assumed to have the Pierson-Moskowitz spectrum

0.0081 * g2 exp 3.11)

S. (w") - ~ exp - H4)] " (76)

The significant wave height, H., changes the maximum wave height and the wave frequency distri-

bution as shown in Fig. 12 for H,. = 15 and 9 (m).

70

H=z15

60.I
I t
I t
I I

50 .i I tI ,
bt

10.

0 02 0.4 0.6 0.8 1 1.2

Figure 12: Examples of Two Pierson-Mcskowitz Wave Height Spectra
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4.2.2 Response for Random Wave Height

In this section, the influance of different significant wave heights, drag coefficient , hinge friction

and non-zero intial condition on the response is investigated. Fig. 13 compares the tower response

for H. = 9 and 15 (m). Here we enlarged the buoyancy force so that the tower 'natural frequency'

is fA, = 0.07 (Hz) = 0.44 (rad/sec). It can be seen that the deflection angle for H, = 9 (m) is of

the same magnitude as for for H, = 15 (m), although the later maximum wave height is four times

larger then the former (as can be seen from Fig. 12). The reason is that the natural frequency of

the tower coinsides with where most of the spectral energy for H, = 9 (m) is located, as shown in

Fig. 12. Since the lowest wave freqency is about w = 0.2 (rad/sec) articulated tower are designed

to have a 'natural frequency' lower than that.

S it • i •t i o 30

Z 3C

,0"ifit
0 so 100 1so 20 25 300

Figure 13: Tower Response - Deflection angle and Total Monient for H. = 15 (dashed line) and 9 (solid line) (m)
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A comparison of the tower response for different values of the drag coefficient are plotted in

Fig. 14. This figure shows the deflection angle and the total drag moment, Md = MDh - MD., for

CD = 0.6 and 1, and H. = 9 (in). It can be seen from the figure that the deflection angle and the

drag moment are larger for CD = 1, since the drag moment in the Morison equation is proportional

to the drag coefficient. The results were similar for different significant wave heights.

10x10 ,

5.SI
0

oL 100 150 200 20 300
TIN (89c)

x 100

III I I

0.5

0 so 100 150 200 0 30
TIN (9eC)

Figure 14: Tower Response - Deflection angle and Total Drag Moment for H, = 9 (m) and CD = 0.6 (dashed line)

and 1 (solid line).
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The friction effect on the response is shown clearly in Fig. 15. Here the significant wave height

is H. = 9 and Cn = 1. It is seen that the response is much smaller and smoother due to the

additional friction in the system.

x10._ Tim " omwin(a) x.104 TimsDmn (c)

6

00 0
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-41-0
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0
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Figure 15: Tower Response - Deflection angle - Time and Frequency Domain for H. = 9 (m) and CD= 1, (a, b)

p = 0 and (c, d) p = 0.4
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* The response for nonzero initial conditions is depicted in Fig. 16. The response for i(t = 0) =

O.O1(radfsec) (a, b), and O(t = 0) = 0.05(rad) (c, d). The drag coefficient is CD = 0.6 and Ho = 9

(m).

(a) (C)

S. . .. .e ....... ......... . ............ . . . .. . . .. . . .

12 12 ... ............................. ......... ......
.0. 100 200 300 400 700I 2D0 30 400
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i10o ~ ~~(b) i02 0
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. .. . . . . .. .. . . . 0 .... 10...

S0 02 0.4 0.6 0 0 02 0.4 0.6
Fmquncy (H) Fmrun/ (Hz)

Figure 16: Tower Response - (a, b) Deflection angle 0(t = 0) = 0.05 (rad) and (c, d) i(t = 0) = 0.01 (rad/sec).
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5 Discussion and Summary

The nonlinear differential equation of motion for an articulated tower submerged in the ocean is

derived. Geometric as well as force nonlinearities are included in the derivation. The wave velocities

and accelerations are determined at the instantaneous position of the tower, a fact that added to the

nonlinearities of the equation. The equation is solved numerically using 'ACSL' for deterministic

and random wave loading.

The response of the tower to harmonic wave excitation at its 'natural frequency' and at twice its

'natural frequency' demonstrates beating, where the amplitude varies between two extremes. This

beating is due to the nonlinear behaviour of the system. Coulomb damping reduces the beating

phenomenon and the response amplitude, so it has a stabilizing effect on the system. When the

system is excited at an arbitrary frequency, and the wave height is greater than about 10 (m), the

response 'jumps' between two stable equilibria, exhibiting chaotic behaviour.

To solve the equation for random wave loading, the Pierson-Moskowitz spectrum that describes

the wave height distribution was first transformed into a time history. The equation was solved for

two significant wave heights. Again the response was periodic consisting of the fundamental tower

frequency and its multipliers. For significant wave height of 9 (m), the response was larger than that

for 15 (m), since in the former the tower 'natural frequency' coincides with the frequencies where

most of the energy is located. The response with coulomb damping shows that friction stabilizes

the system. Notice that in order to reduce stresses in the structure, the friction moment has to be

low enough so that the tower can comply with the wave loading.

A more realistic model having two angular degrees of freedom is being analyzed at the present

time. The response due to wave, current (colinear and non-colinear) and vortex shedding loading
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r is investigated loading and results will be published in the near future.
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ABSTRACT REVIEW AND PROBLEM DEFINITION

Compliant platforms such as articulated towers are eco-
nomicafly attractive for deep water conditions because

This paper presents studies on the response of an ar- of their reduced structural weight compared to conven-
ticulated tower in the ocean subjected to deterministic tional platforms. The foundation of the tower does not

and random wave loading. The tower is modeled as resist lateral forces due to wind, waves and currents; in-
an upright rigid pendulum with a concentrated mas stead, restoring moments are provided by a large buoy-

at the top and having one angular degree of freedom ancy force, a set of guylines or a combination of both.
about a hinge with coulomb damping. In the deriva- These structures have a fundamental frequency well be-
tion of the differential equation of motion, nonlinear low the wave lower frequency. As a result of the rela-
terms due to geometric (large angle) and fluid forces tively large displacements, geometric nonlinearity is an
(drag and inertia) are included. The wave loading is important consideration in the analysis of such a struc-
derived using Morison's equation in which the velocity ture. The analysis and investigation of these kind of
and acceleration of the fluid are determined along the problems can be divided into two major groups; deter-
instantaneous position of the tower, causing the equa- ministic and random wave and/or current loading. We
tion of motion to be highly nonlinear. Furthermore, briefly review work in this area in the next two subsec-
since the differential equation's coefficients are time- tions.
dependent (periodic), parametric instability can occur
depending on system parameters such as wave height
and frequency, buoyancy, and drag coefficient. The Deterministic Loading
nonlinear differential equation is then solved numeri- Chakrabarti and Cotter (1979) [2] analyzed the motion
S cally using 'ACSL' software. The response of the tower of articulated tower. The tower is articulated by a uni-
to deterministic wave loading is investigated and a sta- versal joint having single degree of freedom. They as-
bility analysis is performed (resonance and parametric sumed, linear waves, small perturbations about an equi-
instability). To solve the equation for random load- librium position, linear drag force and that the wind
ing, the Pierson-Moskowitz power spectrum, describing current and wave are colinear. Their resulting equation

the wave height, is first transformed into an approxi- of motion is,
mate time history using Borgman's method with slight
modification. The equation of motion is then solved, I + B(4) + D4 + CP = Moe'(`#'), (1)

and the influence on the tower response of different pa- where I is the total moment of inertia including added
rameter values such as buoyancy, initial conditions and mass, B(0) is the nonlinear drag term, Do is the struc-
wave height and frequency, is investigated. tural damping, Co is the restoring moment due to

buoyancy and M0 is the wave moment. An analyti-
cal solution is then compared to experimental results

Key words : Articulated, Dynamics, Random, Sta- to show good agreement as long as the system is inertia

bility, Chaos predominant, and not drag predominant.



In a later paper, Chakrabarti and Cotter (1980) [3] function. The discontinuity in the stiffness is assumed
investigated transverse motion, the motion perpendic- to be small, and thus replaced by an equivalent contin-
ular to the horizontal velocity. The tower pivot is as- uous function using a least-squares method to get the
sumed to have two angular degrees of freedom and is following Duffing equation
taken to be frictionless. It is also assumed that the mo-
tion is not coupled, so the inline solution is obtained 1 + ci + k, 0 + k282 + k3 93 = MO coewt, (3)
(the same as in the previous paper) from which the
relative velocity between the tower and the wave is oh- where k1 , k2 , k3 are spring constants depending on
tained. The lift force (in the transverse direction) can buoyancy, gravity and the mooring lines. The equation
then be obtained and the linear equation of motion is of motion is solved analytically and numerically, and
solved analytically and compared to experimental re- stability analysis is performed. The analytical solution
suits. The comparison shows good agreement, espe- agrees very well with the numerical solution. The main
cially when the drag terms are small. results of their analysis are that as damping decreases,

Jain and Kirk (1981) [4] investigated the dynamic jump phenomena and higher subharmonics occur, and

response of a double articulated offshore structure to chaotic motion occurs only for large waves and near the
waves and current loading. They assumed four degrees first subharmonic (excitation frequency equals twice the
of freedom, two angular for each link. The equations fundamental frequency); the system is very sensitive to
of motion were derived using Lagrange equations. In initial conditions.
deriving the equations of motion the following assump- Seller and Niedzwecki (1992) [7] investigated the re-
tions were made: drag and inertia forces tangent to the sponse of a multi-articulated tower in planner motiontower are negligible, and the wave and current veloci- (upright multi-pendulum) to account for the tower flex-ties are evaluated at the upright position (small angles ibility. The restoring moments (buoyancy and gravity)

assumption). The linearized equations were solved to were taken as linear rotational springs between each
find the natural frequencies of the system and then nu- link, although the authors say that nonlinear springs

merically solved to find the response •ue to colinear and are more adequate for this model. Each link is assumed

non-colinear current and wave velocities. They found to have a different cross section and density. The equa-

that when the wave and the current velocities are co- tions of motion are derived using Lagrange's equations,

linear, the response of the top is sinusoidal, while for in which the generalized coordinates are the angular
noncoinear velocities the response is a o x thre deflections of each link. The equations in matrix form
dimensional whirling oscillation. are

Thompson et al. (1984) [5] investigated the motions [M]{G) + [K]{G} = [Q], (4)
of an articulated mooring tower. They modeled the where [M] is a mass matrix that includes the actual
structure as a bilinear oscillator which consists of two mass of the link and added mass terms, while the stiff-
linear oscillators having different stiffnesses for each half ness matrix [K] includes buoyancy and gravity effects.
cycle, Damping and drag forces are not included in the model.

mi + ci + (ki, k2 )z = Fo sin wt, (2) The homogeneous equations for a tri-articulated tower
where k1, k2 are the stiffnesses for x > 0 and x < 0 are numerically solved to study the effects of different

wher hi k2 re he siffesss fo z 0 ad Z< 0 parameters, such as link length, material density andrespectively. The equation is solved numerically for praerssuhslikentmeiadniyad
differentspectivel. T eatiosand, is soled, numerically f spring stiffness, on the natural frequency of the system.
different spring ratios and, as expected, harmonic andGolbea.(19)[]nlydthnnierr-

subharmonic resonances appeared in the response. A Gothib et al. (1992) (8] analyzed the nonlinear re-
comparison between the response and experimental sponse of a single degree of freedom articulated tower.
sultscofparineduced-scae modelshonsed gode agrer mentr In the derivation of the equation, the expressions for
uints of a reduced-scale model showed good agreement the buoyancy moment arm, added mass term, and drag

Choi and Lou (1991) [6] have investigated the be- and inertia moments are evaluated along the station-
haviouriof and artiulated offs]hoe i gatf . They md- ary upright tower position and not at the instantaneoushaviour of an articulated offshore platform. They rood- poionfthtwe.Tegvrngquinisfte

eledit s a uprghtpenulumhavng ne dgre of position of the tower. The governing equation is of the
eled it as an upright pendulum having one degree of form

freedom, with linear springs at the top having different f + -f + R(O) = M(i, t), (5)
stiffneses for positive and negative displacements (bi-
linear oscillator). The equation of motion is simplified where R(O) = a sin 0 and a is linear function of buoy-
by expanding nonlinear terms into a power series and ancy and gravity, M(i,t) is the drag moment. Approxi-
retaining only the first two terms. They assumed that mated harmonic and subharmonic solutions are derived
the combined drag and inertia moment is a harmonic using a finite Fourier series expansion, and stability



analysis is performed by a Lyapunov function approach, loading. The wave loadings (drag, inertia and buoy-
The solution shows a jump phenomenon in primary and ancy) are evaluated via numerical integration. The fol-
the secondary resonances. lowing results were obtained from the parametric study,

1. The dynamic response is very small since its fun-
Random Loading damental frequency is well below the wave's fun-

Muhuri and Gupta (1983) [9] investigated the stochastic damental frequency.
stability of a buoyant platform. They used a linear 2. Nonlinear effects (drag force, variable buoyancy)
single degree of freedom model as follows have considerable influence on the response.

i + 2cz + (1 + G(t))z = 0, (6) 3. Current velocity has a large influence on the re-

where z is the displacement, c is the damping coeffi- sponse.

cient and G(t) is a stochastic time-dependent function Hanna et al. (1983) [12] analyzed the nonlinear dy-
due to buoyancy. It is assumed that G(t) is a narrow- namics of a guyed tower platform. The tower is rep-
band random process with zero-mean. A criterion for resented by a lumped parameter model consisting of
the mean square stability is obtained from which the discrete masses. Each mass has three degrees of free-
,il•owing results are found: for c > 1 the system is al- dom, two translations and one rotation about the ver-
wkys stable, and for 0 < c < I there are regions of tical axis. The external forces on the structure are ap-
stability and instability. proximated by concentrated forces and torques at the

Datta and Jain (1990) [10] investigated the response nodal points. The equation of motion is
of an articulated tower to random wave and wind forces.
In the derivation of the single degree of freedom equa- [M]{ii) + [C]{u) + [K(u)]{u) = {P(t, u, u)j, (8)
tion of motion the tower is discretized into n elements
having appropriate masses, volumes and areas lumped where [M] is the total mass matrix including added

at the nodes, and there is viscous damping. The equa- mass terms, [C] is the structural damping matrix as-

S tion of motion is, sumed to be proportional to the mass matrix and [K(u)]
is the total nonlinear stiffness matrix that ir.cludes

I(1 + (t))i + ci + R(1 + v(t))V = F(t), (7) mooring lines effects, soil stiffness and geometric stiff-
ness. {P(t, u, i)) is the nonlinear dynamic load vec-

where I/l(t) is the time varying added mass term, tor due to wave, current and wind. The equation is
Rv(t) is time varying buoyancy moment and F(t) is then solved using normal mode superposition and the
the random force due to wave and wind. The Pierson- response is calculated at each time step. This method
Moskowits spectrum is assumed for the wave height and is good only if the nonlinearities are not large. Deter-
Davenport's spectrum assumed for the wind velocity. ministic and random loading are considered. The so-
The equation is solved in the frequency domain using lution shows insignificant flexure modes while the tor-
an iterative method, which requires that the deflection sional one has a noticeable effect on the deck rotational
angle O(t) and the forcing function F(t) be decomposed response.
into Fourier series: The coefficient of the sin and cos Kanegaonkar and Haidar (1988) [131 investigated the
are then found iteratively. From their parametric study, nonlinear random vibration of a guyed tower. They in-
they concluded the following: cluded nonlinearities due to guylines stiffnesses, geome-

try, load and material. The simplified planner equation1. Nonlinearities such as large displacements and drag of motion is

force do not influence the response when only wind

force is considered. 1i + ci + KO +k 10
3 = M(t), (9)

2. The random wind forces result in higher responses where K is a spring constant depending on buoyancy,
than do wave forces. gravity and guyline horizontal stiffness, and k, is a con-

3. The r~mns. response due only to wind forces varies stant depending on the guyline vertical stiffness. M(t)

in a linear fashion with the mean wind velocity, is the random wave loading. The equation is then
solved numerically where the wave height is defined by

In a later paper, Jain and Datta (1991) [11] used the the Pierson-Moskowitz spectrum. It was seen that the
same equation and the same method of solution to in- response is non-Gaussian for significant wave heights
vestigate the response due to random wave and current greater than 5 m.



Gerber and Engelbrecht (1993) investigated the re- PROBLEM DESCRIPTION
spouse of an articulated mooring tower to irregular seas.
It is an extension of earlier work done by Thompson et A schematic of the structure is shown in Fig. I. It
al. (1984) [(]. The tower is modeled as a bilinear cecil- consists of a tower submerged in a fluid having a con-
lator, that is, a linear oscillator with different stiffnesses centrated mass at the top and one degree of freedom
for positive and negative deflections, 0 about the z axis. The tower is subjected to wave

mi + cz + (kl, k2)z = F(t). (10) loading. Two coordinate systems are used; one fixed
(x,y,z) and the second attached to the tower (:',y',z').

The random forcing function F(t) is assumed to be the AU forces/moment are derived in the fixed coordinate
sum of a large number of harmonic components, each system, which means that the tower rectilinear velocity
in different frequency, a procedure similar to that pro- is resolved into z, y coordinates. The motion of the
posed by Borgman (1969) [14]. The equation is then tower is assumed to be only in plane.
solved analytically since it is linear for each half cycle. This problem has similarities to that of an inverted
The solution is obtained for different cases; linear oscil- pendulum, but due to the presence of gravity waves,
lator (both stiffnesses are the same), bilinear oscillator, additional considerations are made:
and for the case of impact oscillator (a rigid cable) in
which oscillation can occur only in one half of the cy- 1. Forces due to buoyancy and vertical wave velocity
cle. For future study they suggest to include nonlinear are summed and denoted as To.
stiffness and/or using a different spectrum to describe
the wave height. 2. Drag forces proportional to the square of the rela-

tive velocity between the fluid and the tower need
Problem Definition to be considered.

In this paper, the response of an articulated tower sub- 3. Fluid inertia forces due to fluid acceleration are
merged in the ocean is investigated. The nonlinear dif- part of the loading environment.
ferential equation of motion is derived, including nonlin-
earities due to geometry, coulomb damping, drag force, 4. Fluid added mas is directly included in the inertia
added mass buoyancy. All forces/moments are eval- forces.
uated analytically and explicitly at the instantaneous
position of the tower and, therefore, they are time- M
dependent and highly nonlinear. The equation is then
numerically solved using 'ACSL' - Advanced Continu-
ous Simulation Language [15], a powerful software lan-
guage for deterministic and random wave loading us-
ing the Pierson-Moskowitz wave height spectrum. A
harmonic and subharmonic solutions for deterministic
wave heights are obtained. The response to random
wave heights for different significant wave heights is in-
vestigated, the influence of coulomb damping on the
response is analyzed, and chaotic regimes of behavior d
are identified.

The distinctions between this study and the literature
with which we are aware are that, Fv

1. A sound and exact derivation of the nonlinear
equation of motion is provided.

2. All terms in the equation of motion are analytically
derived. 0Y

3. Coulomb friction in the tower hinge is added.

4. Usage of 'ACSL' for the numerical solution pro-
vides an easy way to modify parameters and per- Figure 1: Model and Coordinate Frames
form a sensitivity study.



EQUATION OF MOTION 2. F., Fh are the vertical and horizontal fluid forces
due to fluid drag and inertia.

The equation of motion is derived using Newton's sec-

ond law, setting all moments (external and inertial) act- 3. Mg, mig are the forces due gravity.
ing on the tower about hinge to zero. We will find the We next describe these forces and moments.
equation of motion to be of the form,

J(g(9))i = ' M (t, ,f(f),e,sign(i)), (11) Inertia Moment
The inertia moment equals the total moment of inertia

where, J(g(O)) is the effective position dependent mo- of the tower plus the fluid added mass term, multiplied
ment of inertia, g(f), f(O) are nonlinear functions of 9 by the angular acceleration of the tower,
(trigonometric functions), w is the wave frequency and
M is the sum of all external moments that act on the M, = (Jo + MI 2)e + M11, (12)
tower. Certain assumptions have been made in deriv- where J is the moments of inertia of the tower about
ing the nonlinear equation of motion. These are listed point 'o' and MJ0 is the fluid added mass moment. As-
below.ponVan iistefudaddmsmoetA-

suming that the fluid added mass due to the end mass

is negligible, the total inertia moment is
Assumptions

1. The tower stiffness is infinite: EI = oo.
2. Twhere J.1., the total moment of inertia, is2. The hinge has coulomb damping.

3. The tower has a uniform mass per unit length, m J11 = !(Ml + M)12 + (14)
and is of length I and diameter D.-1 3 D2

4. The tower is a smooth slender structure with uni- 3-if)4L( +4tan20).
form cross section. where L is the projection, in the z direction, of the

5. The end mass M is considered to be concentrated submerged part of the tower and is quantified later. CA
. tis the added mass coefficient which equals CA = CM--1,
at the end of the tower. (It has no volume.) where CM is the inertia coefficient.

6. The tower length is greater than the fluid depth,
but the dynamics is not limited to the case of M Moments due to Gravity, Buoyancy
always being above the mean water level. The following moment is due to terms that do not de-

7. The structure is statically stable due to the buoy- pend on the fluid velocity, such as gravity and buoyancy
ancy force. forces,

8. The waves are linear having random height. M2 = Toi4 - (M + m-)glsinO, (15)
. where g is the gravitational constant, To is the buoyancy

9. Morison's fluid force coefficients Cn and CM are force which is time dependent and lb is its moment arm;
constant.

D2
10. The center of mass (c.g.) of the tower is at its To = pg-- -L., (16)

geometric center.
geuentswind and. wwhere Lo, which is the length of the submerged paer of

11. Currents, wind and wave slamming forces are not the tower, is
included. LS = d + V(y,t) (17)

cos 0

Forces/Moments Acting on the Tower where d is the mean water level, p is the fluid den-
sity i•(y, ) is the wave height elevation evaluated at the

Fig. 1 describes the external forces acting on the tower. mean wavel,
Thes aremean water level,

These are :

1. To is a vertical buoyancy force. r1(9, t) =•H cos(kd tan90- wt + ), (18)



H is the wave height, w is the wave frequency, k is the When solving the equation of motion numerically, the
wave number. The buoyant force acts at the center of sign of the relative velocities and of (d - I coso ) are
mass of the submerged part of the tower 14, checked in each time interval. This is done to set the

S1 2 correct direction of the drag moments and the limits of
4 = tan29co + •L. + L tan2 9sine (19) integration, respectively.

Mormon's Equation for Wave Force Damping Moment

In general, the fluid forces acting on a slender tower The tower hinge is assumed to dissipate energy via

are of two types: drag and inertia. The drag force coulumb friction. In this section the damping moment

is proportional to the square of the relative velocity is evaluated. The general form of the friction force is

between the fluid and the tower, and the inertia force F1, = Np[sgn(i)], (25)
is proportional to the fluid acceleration. The drag and
inertia forces per unit length are given by Morison's where, p is the friction coefficient, and N, the normal
equation, force, is

F11 = ¢I I U- V I (U- V) + C¢mmU, (20) N= F.coso+ FsinO, (26)

where, where E F., E F, are the total forces in the z, y di-

= CDP- rections, respectively. These forces are due to gravity,
2 2buoyancy and fluid drag and inertia. If we assume a

C.,, = DMpI-4 ', (21) hinge radius Rh, then the damping moment is
F1 , is the fluid force per unit length, V is the tower M_, = (ZFcosG+ZFpsine)•

absolute velocity and U is the fluid absolute velocity Rj,#[sgn(i)] (27)
evaluated at the instantanuouse position of the tower.
The moments due to the fluid velocity and acceleration Finally, adding all the external moments, equations
are as follows. The inertia moments are (15), (22), (23), (27), and setting them equal to the to-

L tal inertia moment, equation (13), yields the governing
Mil, = CMm J uzd nonlinear differential equation of motion,

= C.MLtztan d, (22) Jf = -Mf, - M# + Mrh - Mi, + MDh - MD,. (28)

and the drag moments, 0Both sides of this equation are a nonlinear functions of
d, 0, t and w.

MDh = Cddjut-( u-vy).dz (23) NUMERICAL SOLUTION

MDV = CGd 1 W- v, (t -V ,)ztan Odz. The numerical solution for the nonlinear differential
equation (28) was performed using 'ACSL' and the

where Mah, Mi, are the inertia moments due to hoin - analyses of the results was performed using 'MATLAB'.
sontal and vertical accelerations, respectively and MDI, The 'ACSL' code written for this application is avail-
MD, are the drag moments due to horizontal and ver- able upon request. In order to build confidence in the
tical relative velocities, respectively. L, which is the solution, some test cases have been solved using the
upper limit of the integral, depends on the angle 0 as following physical parameters:
follows : Tower properties

L d ifd~ lcos (24) 1. 1 - Length of the tower = 400 (m)
d if d < i cosO.

This means that the moments are calculated only for 2. D - Tower diameter = 15 (m)

the submerged part of the tower. The integrals in equa- 3. M - End mass = 2.5 * 10o (Kg)
tios (22) and (23) are evaluated analytically using the
symbolic software 'MAPLE'. 4. m - Tower mass per unit length = 2 * 103 (x-)



5. # - Friction coefficient = 0.1-0.4

6. R1 - Hinge radius = 1.5 (m) Tm 0" A 1

Fluid properties

1. d- Mean water level = 350 (m)

2. CD - Drag coefficient =0.6 - 1.0 I
3. CM - Inertia Coefficient =1.5

4. p- Water density = 1025 (N,.4)

5. w- Wave frequency = 0.2 - 1.0 (F o) • q ••malomm0

Response for Deterministic Wave Heights

In this section the response of the tower to deterministic
wave heights is established. Free vibration and stability is
analyses are performed.

First, the natural frequency of the tower is found as *E
if it was an upright pendulum subjected to a constant @A 0.1 as 2 6Z

tension force To and gravitational force M.. Fig. 2
shows the tower response to an impulse for CD = 0 and
H = 0 in the time and frequency domain. The response Figure 2: Tower Natural Frequency, CD = 0
is harmonic in the tower natural frequency (,• = 0.026
(Hz), and it agrees with the calculation for the natural
frequency of a pendulum:

-1 /To1, - (0.5m1 + M)gl (91. = ( 2 9 ) T O & A OOM D ~ t W

Fig 3 (a~b) shows the same but for p = 0 and CD=
1, the decay here is not linear since the drag force is
propotional to the velocity squared. Fig 3 (c,d) shows
the free vibration with frictional damping, i = 0.1, in I
the time and frequency domain. Here the amplitude
decays linearly with time as expected when coulomb s m W m o . m
damping is present. From the figure we can evaluate T, 0,

the equivalent damping ratio for CD = 0 to be t = 0.02. a' Dw

Since the damping is nonlinear, the 'natural frequency' !41

and its multipliers are seen in the figure. lie

Fig. 4 shows the response in the time domain and
frequency domain for H = 1 (m) and wave loading fre- o
quency w = 0.064 (Hz). Figures (a, b) are with p = 0 10
and (c, d) are with p = 0.4. In the frequency domain, 0 of
the tower 'natural frequency' and the wave natural fre- 4 -U tooJ S 02 oS

quency are clearly seen. It can be seen that the friction fuqmq0 RnouW9

has a damping and stabilizing effect on the system.

Figure 3: Tower Free Vibration with Damping, (a, b)
p=0.1, (c, d) CD = 1
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Figure 4: Tower response to wave excitation, Time and
Frequency Domain, H = 1 (m) Figure 5: Tower response to harmonic wave excitation

at the 'Natural Frequency' - Beating Phenomenon

Since this is a nonlinear system, its response to har-
monic excitation at the system's 'natural frequency' or
its multipliers can be multivalued, indicating the oc-
currence of a 'jump'. Fig. 5 shows the tower response
to harmonic wave excitation at w = Q. (harmonic so- 1,OMORUPWO, RTMOMAhOMI "
lution) with and without damping. If the system was I
linear, such loading would have caused resonance insta- e AS
bility. But since the system is nonlinear, an amplitude
change (beating) can be seen Fig. 5 (a), indicating that i
'jumps' occur from one amplitude to the other (Wilson
[16] pp. 147). It can also be seen f t although the ex- I
citation frequency is constant, the frequency response
is not Fig. 5 (b). Again the reason is the nonlinear n "M a, 0 M us 10

system characteristics. From the response with friction 1000

(figures (c, d)) we see that the response is not smaller R"' M o'

since it is unstable, but the ratio between the large and , 1
small amplitude of the beating gets smaller. J j

Fig. 6 shows the response due to harmonic wave ex- j
citation at twice the system 'natural frequency' (sub- 8*4
harmonic solution), with (c, d) and without friction (a,
b). We can see the beating phenomenon, and from the 4C

frequency domain we see that the response consists of 0 0.1 02 13 0 ai 02 03
the 'natural frequency'and it multipliers. This is due to am yq0

the nonlinear nature of the system.

Figure 6: Tower response to sub-harmonic wave excita-
tion at twice 'Natural Frequency'



The direction of the drag force is opposite to the di- T

rection of the relative velocity between the tower and .
the wave. If the direction of the relative velocity is the

same as the tower velocity, the drag will always stabi-
lue the system. The reason is that the drag moment
will always be opposite to the direction of the deflec-
tion angle 0. But if the relative velocity direction is i"
opposite to tower velocity, the drag moment can cause
instability. For zero wave velocity the drag force always 10 1 N S u.0 m
stabilizes the system, as can be seen from Fig. 3. Fig. Talmo
7 describes the horizontal and vertical components of R9 D-0 ,AUW,,

the relative velocity and tower velocity. WI

ImI
I0 O U 0.1 0.16 0.2 O1

-a TMI i
I ,is u " - me - -" Figure 8: Tower response to harmonic wave excitation

Talmo T. 00 at the 'Natural Frequency', C'D = 0.6

"I Moon [17] provides several ways to identify chaotic
vibrations. We next use three ways to prove that the
system under consideration is chaotic. Fig. 9 describes
the response of the tower to a harmonic wave excitation

. having a frequency of w = 0.09 (Hz). Fig 9 (a, b) shows

the response in the time and frequency domains and the
is M -1 a is 0, W s phase-plane trajectory (c). From the time history it is
Talmo Talmo clearly seen that the system jumps between two stable

equilibrium states. The frequency domain shows mul-

Figure 7: Relative and Tower Velocities - (a, c) Hori- tiharmonic energy although the system has one degree

zontal and (b, d) Vertical of freedom; another indicator of chaos. Finally, from
the phase-plane trajectory we see that the orbits never
close or repeat. Thus, we conclude that this model has

Chaotic Response the characteristics of a chaotic system. This chaotic
phenomenon appeared only when the wave height was

Because of the nonlinear characteristics of the system, larger than 10 (m).
the governing differential equation of motion, chaotic
motion can occure under certain conditions. Fig. 8
shows the response of the tower to a harmonic wave
excitation at a frequency w = 0.95fl,. We see that the
response 'jumps' between two stable equilibrium states.
This phenomenon can imply a chaotic system.
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Figure 13: Tower Response - (a, b) .Deflection angle
Figure 11: Tower Response - Deflection angle and Total 8(t = 0) = 0.05 (tad) and (c, d) 9(t = 0) = 0.01
Drag Moment for H. = 9 (m) and CD = 0.6 (dashed (tad/see).
line) and 1 ( solid line).

DISCUSSION AND SUMMARY

.le lmnwof( le T3mM(4 The nonlinear differential equation of motion for an ar-
Iti T• ticulated tower submerged in the ocean is derived. Geo-

14 [metric as well as force nonlinearities are included in the
derivation. The wave velocities and accelerations are1 determined at the instantaneous position of the tower,
a fact that added to the nonlinearities of the equation.

f0 The equation is solved numerically using 'ACSL' for
deterministic and random wave loading.

a 3 a The response of the tower to harmonic wave excita-
TMOO tion at its 'natural frequency' and at twice its 'natural

*,e rv lfrequency' demonstrates beating, where the amplitude
varies between two extremes. This beating is due to

to the nonlinear behaviour of the system. Coulomb damp-
j ing reduces the beating phenomenon and the response

a amplitude, so it has a stabilizing effect on the system.
I to When the system is excited at an arbitrary frequency,

*j •and the wave height is greater than about 10 (m), the
, 0. O• 5 o o1 OU OS response 'jumps' between two stable equilibria, exhibit-

, to ReUM' ) ing chaotic behaviour.
To solve the equation for random wave loading, the

Pierson-Moskowitz spectrum that describes the wave
Figure 12: Tower Response - Deflection angle - Time height distribution was first transformed into a time
and Frequency Domain for H. = 9 (m) and CD = 1, history. The equation was solved for two significant
(a, b) p = 0 and (c, d) p = 0.4 wave heights. Again the response was periodic consist-

ing of the fundamental tower frequency and its multipli-



0.2 (rad/see) articulated tower are designed to have a0, 'natural frequency' lower than that.
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Figure 9: Tower response to a harmonic wave excita- TM

tion, w = 0.09 (Hz) - Chaos

Figure 10: Tower Response - Deflection angle and Total

Random Wave Height Moment for H, = 15 (dashed line) and 9 (sold line) (m)

In this section the tower response to random wave A comparison of the tower response for different val-
height excitation is investigated. The wave height dis- ues of the drag coefficient are plotted in Fig. 11. This
tribution is generally expressed in the form of a power figure shows the deflection angle and the total drag me-
spectral density. For a simulation of the response ment, Md = Mthe - MDe, for Cg = 0.6 and 1, tad
in the time domain, the Pierson-Moskowitz spectrum, H, = 9 (m). It can be seen from the figure that the
which is assumed to describe the spectrum of the wave deflection angle and the drag moment are larger for
height, is transformed into a an infinite series of time- ange moment are lorgerufo
dependent harmonic functions. This is accomplished tion is proportional to the drag coefficient. The results
using a method by Borgo1an 14], described also in Wil- were similar for different significant wave heights.
son's book [16]. The friction effect on the response is shown clearly in

Fig. 12. Here the significant wave height is H, = 9 and
Response for Random Wave Height CD = 1. It is seen that the response is much smaller and

smoother due to the additional friction in the system.
In this section, the influance of different significant wave The response for nonzero initial conditions is depicted
heights, drag coefficient , hinge friction and non-zero in Fig. 13. The response for i(t = 0) = 0.01(rad/sec)
intial condition on the response is investigated. (a, b), and 9(t = 0) = O.05(rad) (c, d). The drag

Fig. 10 compares the tower response for H. = 9 coefficient is CD = 0.6 and H. =9 (m).
and 15 (m). Here we enlarged the buoyancy force so
that the tower 'natural frequency' is Q. = 0.07 (Hz)
= 0.44 (rad/see). It can be seen that the deflection
angle for H. = 9 (m) is of the same magnitude as for
for H. = 15 (m), although the later maximum wave
height is four times larger then the former. The reason
is that the natural frequency of the tower coinsides with
where most of the spectral energy for H, = 9 (m) is
located. Since the lowest wave freqency is about w =



ers. For significant wave height of 9 (m), the response [8] 0. Gottlieb, C.S. Yim, and Hudspeth R.T. Anal-
was larger than that for 15 (m), since in the former the ysis of nonlinear response of an articulated tower.
tower 'natural frequency' coincides with the frequen- International Journal of Offshore and Polar Engi.-
cies where most of the energy is located. The response neering, 2(1):61 - 66, 1992.
with coulomb damping shows that friction stabilizes the
system. Notice that in order to reduce stresses in the [9] A.S. Muhuri, P.K.and Gupta. Stochastic stability
structure, the friction moment has to be low enough so of tethered buoyant platforms. Ocean engmneering,
that the tower can comply with the wave loading. 10(6):471 - 479, 1983.

A more realistic model having two angular degrees of [10] T.K. Datta and A.K. Jain. Response of articulated
freedom is being analyzed at the present time. The re- tower platforms to random wind and wave forces.
sponse due to wave, current (colinear and non-colinear) computer and structures, 34(1):137 - 144, 1990.
and vortex shedding loading is investigated loading and
results will be published in the near future. [11] A.K. Jain and T.K. Datta. Nonlinear behavior of

articulated tower in random sea. journal of engi-
neering for industry, trans. of ASME, 113:238 -
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Abstract

In Rodriguez and Van Kampen's 1976 paper (1], a method of extracting information from
the Fokker-Planck equation without having to solve the equation is outlined. The Fokker-
Planck equation for a Dufling oscillator excited by white noise is expanded about the intensity
of the forcing function, a. This expansion is carried to order O(ai). However no studies
are made of the effects of the order of the expansion, variation of the parameters, nor are
comparisons made to experimental results. In this paper, the expansion is carried to a higher
order, O(a2), results are presented and compared to Monte-Carlo experiments using both
white and colored noise, and parametric studies are performed on the intensity of the forcing
function and the damping coefficient. It is found that the expansion method works well for the
case of white noise and for colored noise where the correlation time is less than 0.1 seconds,
but fails to give certain details. It is also found that the system behaves as expected when the
parameters are varied.
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1 Introduction
The Fokker-Planck equation has proven to be a useful tool in the analysis of simple nonlinear
oscillators excited by stochastic processes. As a partial differential equation for the probability
density function of the response, its solution completely defines the solution of the problem.
It can be used to analyze both a single oscillator of the form

mi + -j(i,z)i + k(i,z)z = 7F(t), (1)

or a system of multiple, linked, oscillators of the form

M_+ r(, x)i + K(i,x =_) (2)

In many cases, a physical system can be approximated by such a system of nonlinear
oscillators. The systems so modeled can range from a Brownian particle to structures excited
by von Karman vortex shedding. Such modeling can be useful for gaining insight into a
problem and the way in which the system will behave as certain parameters are varied.

Once one has decided on the system of oscillators to be used to represent the physical
system, the derivation of the Fokker-Planck equation is relatively straightforward, although
tedious. The problem remains of how to solve it for the probability distribution of the response.
In a very few cases, the Fokker-Planck equation can be solved analytically, but in most cases
no analytical solution exists and one usually must resort to a numerical solution. However this
can be computationally intensive and gives little insight into the larger problem.

In their 1976 paper, Rodr~guez and van Kampen outline a method of dealing with the case
of an oscillator excited by weak Gaussian white noise. The Fokker-Planck equation of the
system is expanded about the intensity, a, of the driving function. This expansion is carried

Lto the order O(a 2). In this way the statistics of the fluctuations can be obtained directly. This
method shows promise as a way to use the Fokker-Planck equation to gain useful information
about a wider variety of systems than was possible before.

This is the first of a planned series of papers exploring the usefullness of this method. As
in the original paper, the method is applied to the problem of a Duffing oscillator excited by
Gaussian white noise. The inherent assumptions of the method are explained here in detail.
The expansion is carried both to the same order as in the original paper, and to order O(a2).
Results are presented and compared to a Monte Carlo experiment. Parametric studies were
done on the parameter of expansion as well as on the other important variable in the expansion:
the coefficient of damping.

2 Expansion of the Fokker Planck Equation for a
Duffing Oscillator
As in the Rodrfguez and van Kampen paper, heretofore called the "Original paper," the
system under consideration is a Duffing oscillator in a heat bath. The equation of motion can
be written simply as

i + ,/ + X + z 3 = F(t). (3)

F(t) is a Langevin force [2] and is assumed to be Gaussian white noise with the following
properties:

< F(t) > = 0

< F(t)F(t') > = 2a6(t - t'). (4)
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It is assumed that the immersion of the oscillator takes place at time t 0 and that the system
is not necessarily at rest.

f(x, v; t) is defined as the joint probability density function of x and v = i at time t. This
leads to the following Fokker-Planck equation (see Ochi [3] for a complete derivation):

SOf Of 38 8 2!Of-+ VO - Or + X3)Lf = -Y "(Vf) + a, . (s

As f(z, v; t) is a complete description of the system response, solution of the above differential
equation for f constitutes a solution of the problem.

The same assumptions on the sizes of the variables in Eq. 5 are made as in the original
paper: namely that -y, z and v will all be assumed to be of the same order of magnitude, and
much larger than a.

In the original paper, it is assumed that the system response due to the forcing function will
be small as compared to the deterministic response due to the initial conditions. Therefore,
the total response can be viewed as random fluctuations, A. and A,,, superimposed onto the
deterministic response to the initial conditions. Furthermore, the random fluctuations will
be of order at. Because the only source of energy is F(t), the power input to the system is
proportional to a. But if the system is to remain stable, then the viscous power dissipation
of the fluctuations caused by the influence of F(t) must be of equal average magnitude as

the power input. Therefore 0(7 y1 2) = O(a) or 0(17) = 0(a2). But the kinetic energy of
the fluctuations must be of the same order as the potential energy. So 0((2) = O(qe) which

implies that O(C) = O(af). Therefore, A. = aiC and A,, = af 7 where C and q are of order

unity. Therefore the following substitutions are made:

ow a(tI+C, (6)

V = (t+aIq.- (7)

In the original paper, the initial conditions, 0(0), and ik(O), are assumed to be zc ) and
the expansion carried through to give the time derivatives of the second order moments. In
Weinstein and Benaroya, [4], the expansion is explained in somewhat greater detail and the
fourth order moments are also derived. In total the following eight equations are derived:

d <2 
(8)

d<C< > = 4"< C/>
dt

Tt _a (4 > (12)2

d < 172>= -2 < Ci > -23y < 172 > -2a < ('377 > +2 + O(J•) (10)
dt
d < C4 >= 4 < (377 > (11)
dt

d < ( 3 < > _ < (13) > _ <.C > + 0(al)

Tt >=3 < 2(14)
d <;n> ( 2e < (r 2 1'7< > -2< (317 > +2 < (.2 > + O(al) (3

d > 2 (15)

d" < q>-- _-4y < 74> -4 < & > +12 < 172 > + 0(al). (15)
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If it is the stationary behavior that is of interest, then one can obtain the equilibrium
values of these quantities by setting each time derivative equal to zero. Then the equilibrium,
or stationary, states of each expectation can be found by simple linear algebra:

<(2> = - < ( 3 1q>eq = 0+O( 4 J)
*~~~ <,> O<(2172 >.=<17 >eq = 0 <1> = •+ O(J•)

<77 >eq = ,+ O(C) <1 3,>,q = 0+ O(cr)
>, = , + (>e = 0 1 + 0o0).

If one is interested in the transient response of the system, and if one can accept a solution
of order O(ca), then one can obtain it analytically. Equations 8 to 10 can be written in matrix
form as follows:

d ( << C2 >> << « 2 >> »

" << 72 >> <<«72>> 2

where M3 = {.1 - } (16)
0 - 2 -2 y

This can be solved through standard techniques to yield the time evolving variances. It must
be noted that by solving only these three equations, the order of the solution has been reducedto O(01):

to~

<< 07 >> 1/2 -1/4 -1/4 Ie'A + (17)
<< 712 >> /A1  -1/A 2  -1/2A3  /Ast 1 /

where

Al = --7

A2 = - + 2iw

1\2 = -7- 2iw

and w= 2-7.

If one is interested in the transient response and desires a solution of order O(o&), one could
cast all of Equations 8 to 15 into a matrix equation of the form of Equation 16. This would yield
a matrix of rank 8. To solve this analytically would require the analytical eigensolution of this
rank 8 matrix. This is a difficult proposition at best with unclear practical need. Instead, for
each particular set of parameters, 7y and p, a numerical matrix is obtained. The eigensolution
is then obtained numerically and the results calculated. It should be noted that there is no
theoretical loss of accuracy in solving the system of equations this way; only roundoff error
degrades the accuracy of the solution.

Thus we have a method for obtaining in closed form the time evolving moments of the
Duffing oscillator subjected to a white noise forcing function.



p

3 Results
The response of a Duffing oscillator with damping coefficient - = 1.0 excited by white noise
of intensity a = 0.1, was calculated using Equation 17 and by solution of all of Equations 8
to 15. As a point of comparison, a Monte Carlo experiment simulating a Duffing oscillator
with the same parameters was performed. This Monte Carlo experiment consisted of one
thousand iterations of a fourth order Runge-Kutta integration of the following restatement of
Equations 3:

d d 3

iXt = v, -jv =:(t)-v-X-X. (18)

The results of the order O(a½) analysis, the order O(a(c) analysis, and the Monte Carlo
experiment axe plotted in Figures 1 to 3.

Figure 1 shows the time evolution of < (2 > as calculated by all three methods. The
order O(a2) analysis shows < (2 > increasing monotonically to its steady state value of
approximately one. The higher order analysis shows < (2 > increasing in nearly monotonic
fashion to its steady state value of about 0.75. However this curve does exhibit some overshoot
at about 2.5 seconds. The results of the Monte Carlo analysis are quite close to those of the
higher order analysis, reaching the same steady state value. The main difference between the
two curves is the slightly greater rise time of the Monte Carlo results. The higher limit of
the order O(ai) analysis and the overshoot of the order O(ai) analysis are artifacts of the
expansion process. The higher order, O(al), time derivatives differ from the lower order,
O(af), ones by the subtraction ofa < C' > in the case ofd < Ci' > and 2a < (Tj> in the
case of < (I2 >. However it can be seen from Figure 4 that < ( > ! 0 during the entire
time span of interest and rises in magnitude quickly, and < C3i7 > is greater than zero during
the first half of the time span of interest where the second order moments are changing most
rapidly. This would explain the slower rise in the magnitude of the order O(cr 2) solutions than

Ithe order O(a2) solutions. It also indicates that inclusion of the higher order terms serve to
lower the overall value of the analytical results and that the omission thereof causes the higher
overall values of the analytical methods than those of the Monte-Carlo methods. As one would
expect, the higher order analyses consistently show mpre points of inflection than do the lower
order analyses.

Figure 2 shows nearly identical curves for all methods. As in Figure 1, the order O(a2)
analysis shows more overshoot in one place than does the lower order analysis. Here this
overshoot occurs at about four seconds, at the second local extreme. It is also noted that,
only the order O(al) method accurately reflects the region where the Monte-Carlo curve is
negative. The initial excursion of the Monte Carlo curve is not as great as that of the other
two curves, although all three approach the x-axis as time increases.

Figure 3 Provides a qualitatively similar comparison of results with both analyses almost
coincidental and again slightly greater in the transient region than the Monte Carlo experiment.
All three curves approach a steady state value of approximately 1.

Figure 5 shows how the time evolution of < 2>, as calculated by the order O(a2) analysis,
is affected by increasing -. Figure 6 shows the same study for the Monte Carlo experiment.
Figure 5 shows not only a decrease in the steady state values of < (2 > with increasing values
of -, but also a smoothing of the curves. The decrease in the steady state values is also seen
in the Monte Carlo curves. The cause of the decrease is a physical one: increased damping
implies increased viscous energy dissipation which leads to smaller excursions of the oscillator.
Comparison of Figures 5 and 6 shows that even when -y becomes large enough to violate
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the order unity assumption, the analysis still gives reasonable results. In fact the agreement
between results becomes better at higher values of -y. It can be seen that, even for - = 0.6,
the Monte Carlo curves are relatively smooth with the exception of the small scale "wiggles"
inherent in Monte-Carlo analysis. This indicates that the multiple local maxima and minima,
i.e., at 3, 5, 7, 9 seconds, in the analytical curves at 7 = 0.6 are due to the low order of -Y of the
analysis. It was assumed at the beginning of the analysis that -y is of order unity. However it
can be seen from these curves that the further -y is from this assumption, the worse the results
of the analysis.

The behavior of the system as -y becomes small is further investigated in Figures 7 and 8.
These curves show how, as -y goes from 0.4 to 0.3 the analysis breaks down completely. It
was shown in Figures 5 and 6 that the -y = 0.3 analysis differed significantly from the Monte
Carlo analysis in the transient region of 0 to 5 seconds, although its large time behaviour
was accurate. Figures 7 and 8 show that as - is made smaller, even the large time behaviour
becomes unreasonable with < (2 > becoming negative which is clearly impossible.

Figures 9 and 10 show how the time evolutions of "< C2 > are affected by increasing values
of a. It can be seen in Figure 9 what happens as the assumption that a is small as compared to
unity is violated. As is shown in Figure 9, the curve for a = 0.3 exhibits oscillations that damp
out slowly with time. As a becomes even larger, negative values for < C2 > develop. However,
since the average of a squared quantity cannot be negative, these results are spurious. The
trend of the steady state value of < C2 > decreasing with increasing values of a is common
to both figures. This does not violate the basic assumption that C is of order unity when a
is small. C does indeed remain of order unity; it was not assumed that C was independent
of a. < C2 > decreases with increasing a due to the nonlinearity of the Duffing oscillator.
The energy stored in the nonlinear spring is greater than that stored in the linear spring by
4 0,t,1il - Cltw , -=I xZ. Therefore the effect of the nonlinearity of the Duffing oscillator is to
decrease < C2 >, and this effect will increase with increasing < (2 > and therefore increasing

Figures 11 to 13 show the results of Monte-Carlo experiments for the system driven by
colored noise. In each curve the time evolving behaviour of the second order moment is
depicted for various values of the correlation time, re. All three figures show essentially the
same behaviour for the case of r. = 0.001 and r, = 0.01 as for the white noise case, Figures 1
to 3. For the case of r, = 0.1, the of the correlated nature of the noise is noticeable, but
perhaps acceptable for some applications. It is clear that when the correlation time becomes
greater than 0.1, the results differ significantly from the white noise case. This is as one would
expect: at rc > 0.1 the correlation time becomes comparable to the natural period of the
oscillator, which is about one second. The correlated nature of the noise appears as a effect
of time scale T, on the time history of the correlated noise. If the time scale of the correlation
is much smaller than the natural period of the oscillator, then the oscillator cannot respond
to this effect. However as r, approaches the natural period of the oscillator, the oscillator can
be, and is, affected.
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4 Conclusions
It can be seen from the figures that the agreement between the results of the various methods
of solution is good. The trends observed are not surprising. The further the parameters of
the system are from violating the assumptions of the analysis, the better the analytical results
agreed with those of the Monte Carlo experiment. It is also seen that by and large, the
higher order analysis is more accurate. One interesting point is that the analytical techniques
are consistently, albeit slightly, greater than the Monte Carlo experiments. This conservative
nature of the analytical method should be noted in applying it.

The method can be applied to systems where the three basic conditions of the expansion are
met: that the intensity of the forcing function, a be of order smaller than unity, the damping
of the system be of order at least unity, and the forcing function be essentially uncorrelated in
time, i.e., correlation time 7, < 0.1

This technique is a valid analytical tool. It is well suited to studying the behavior of a
system under a variety of conditions. The results it gives are accurate and computationally
fast enough to embed such a model as an element of a larger model.
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Abstract

In Rodriguez and Van Kampen's 1976 paper [1], a method of extracting information from

the Fokker-Planck equation without having to solve the equation is outlined. The Fokker-

Planck equation for a Dufling oscillator excited by white noise is expanded about the intensity

of the forcing function, a. In Weinstein and Benaroya', the effect of the order of expansion is

investigated by carrying the expansion to a higher order. The effects of varying the system

parameters is also investigated. All results axe verified by comparison to Monte Carlo exper-

iments. In this paper, the van Kampen expansion is modified and applied to the case of a

Duffing oscillator excited by colored noise. The effect of the correlation time is investigated.

Again the results are compared to those of Monte Carlo experiments. It was found that the

expansion compared closely with those of the Monte Carlo experiments as the correlation time,

7r, was varied from 0.001 to 10 seconds. Examination of the results revealed that the colored

noise can be categorized in one of four ways: 1) for Tr < 0(0.01)sec the noise can be considered

as white for all intents and purposes, 2) for 7, = 0(0.1) the noise could be considered white

for some purposes, 3) for r7 = O(1.Osec) the correlated nature of the noise must be considered

in an analysis, and 4) for 0(1.0) < r7 the noise can be considered as deterministic.
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1 Introduction

The Fokker-Planck equation has proven to be a useful tool in the analysis of simple nonlinear

oscillators excited by stochastic processes. As a partial differential equation for the probability

density function of the response, its solution completely defines the solution of the problem.

It can be used to analyze both a single oscillator of the form

m-* + -y.+ ).* + k(i, z)z = (1))

or a system of multiple, linked, oscillators of the form

M• + r(i, x)i•+ K(*,z)_ - (2)

In many cases, a physical system can be approximated by such a system of nonlinear

oscillators. The systems so modeled can range from a Brownian particle to structures excited

by von Karmann vortex shedding. Such modeling can be useful for gaining insight into a

problem and the way in which the system will behave as certain parameters are varied.

Once one has decided on the system of oscillators to be used to represent the physical

system, the derivation of the Fokker-Planck equation is relatively straightforward, although

tedious. The problem remains of how to solve it for the probability distribution of the response.

In a very few cases, the Fokker-Planck equation can be solved analytically, but in most cases

no analytical solution exists and one usually must resort to a numerical solution. However this

can be computationally intensive and gives little insight into the larger problem.

In their 1976 paper, Rodriguez and van Kampen outline a method of dealing with the case

of an oscillator excited by weak Gaussian white noise. The Fokker-Planck equation of the

system is expanded about the intensity, a, of the driving function. This expansion is carried

to the order O(ai). In this way the statistics of the fluctuations are obtained directly. This

4



method shows promise as a way to use the Fokker-Planck equation to gain useful information

about a wider variety of systems than was possible before.

This is the second of a planned series of papers exploring the usefulness of this method. In

the previous paper [2], the method was applied to the problem of a Duffing oscillator excited

by Gaussian white noise. The inherent assumptions of the method were explained there in

detail, the expansion was carried both to the same order as in the original paper, and to order

O(ct), and results were presented and compared to Monte Carlo experiments. Parametric

studies were also performed on the parameter of expansion as well as on the other important

variable in the expansion: the coefficient of damping.

In this paper, the expansion is applied to the case of a Duffing oscillator excited by expo-

nentially correlated noise. A parametric study is performed on the correlation time, r, and

the results are compared to those of Monte Carlo experiments. The range of rc for which the

correlated noise can be treated as white is identified as well as the range of rc for which the

correlated nature of the noise cannot be ignored.
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2 Expansion of the Fokker Planck Equation for a

Duffing Oscillator Excited By Correlated Noise

In Gang [3], a method is outlined for deriving the Fokker Planck Equation of a system driven

by colored noise. The procedure outlined consists of defining a dummy variable, y, to represent

the colored noise process. y is defined as a first order, linear, differential filter of the white

noise process:

ciy(t) = c2Y(t) + c3 Y(t), (3)

where cj are constants and Y(t) is the Gaussian white noise process defined by

<F(t)> = 0

< F(t)F(') > = 2a6(t - e'). (4)

The system is now formulated as a system of first order differential equations driven by

Y(t):

L= Y +L • (5)
Cl Cl

S= Fx(x,v, y) (6)

S= Fv(z, v, y). (7)

Several examples of colored noise filters exist in the literature. Billah and Shinozuka [4]

use the following

Tr/(t) = -y(t) + F(t), (8)

where rc is the correlation time. It can be seen that as rc --* 0, y(t) --* F(t). For this derivation,

it will be assumed that rc is not vanishingly small, so that Equation 8 can be written as:

j/(t) = -py(t) + IF(t), (9)

6



where p =

The Duffing oscillator excited by colored noise can nuw be written as

_(t) + -y(t) + X(t) + z3(t) = y~t), (10)

where -f is the coefficient of damping.

By defining v(t) =- (t), the system can be recast as three linked, ordinary differential

equations in time in the form of Equations 5 to 7:

i(t) = (t) (1

ib(t) = /(t) - 7/V(t) - z(t) - z3(t) (12)

i(t) = -Py(t) + pF(t). (13)

Define f(z, v, y; t) to be the joint probability density function of :(t), v(t), and y(t) at time

t. The Fokker-Planck equation for f(z, v, y; t), can now be derived as

= -- f- a [y- •/ - X - XS)f] + p±(yf) + apa 2kf (14)

Equation 14 is the governing equation for the time evolution of the transition probability

density function f(z, v, y; t). FPom this point the derivation of the previous paper [2] will be

followed.

As was shown in the previous paper, the response of the oscillator can be separated into a

deterministic component due to the initial conditions and a random component of magnitude

O(.i'i). However, by assuming that the oscillator is initially at rest, the deterministic com-

ponent can be shown to be equal to zero. Therefore the following substitutions are made into

Equation 14.

z = V•(15)
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yV Vrap (17)

f (V ,Vr,- -3 11(,p;t). (18)

The factor a-3/2 will be omitted from the definition of II(C, v7, p; t). If carried through the

derivations, it would be divided out at a later stage of the derivation.

It must be explained why, as is implied in Equation 17, y is of the order of magnitude at.

This is because the magnitude y is of the same order of magnitude of the white noise forcing

function, F. But it can be seen from the definition of F, Eqs 4, that a = 2a4. Therefore F,

and consequently y, are of O(ai).

The relationships between the partial derivatives of f and HI are obtained as:

. f all (19)

011 (20)

iYf P 1 (21)

.-f all (22)
at =•

This yields the following transformed FPK:

On = -• - [(p- 3- r - D•l2 f'3
Ot-7I _i~ [aP~)1L +A ][ j+ A2Op2. (23)

By manipulating the left hand side of Equattion 23, the following is obtained:

811. on . aD i . a 0 _)-FC -61 1- 'pp -17-Fn- 0 7 --7

+,Apa (pII) + A2 0I (24)

If one substitutes the definitions of C, %, and p into Eqs 11, 12 and 13, one can use the

resultant equations to separate Equation 24 into the following three equations:

01 = 1711 (25)

8



tH = 12p - tr) - nC.GC3 (26)

pII = -ppfl - 1.21P. (27)

Using Eqs 27, 25, and 26, one can find the time derivatives of the higher order moments of

C, q and p. As an example, the time derivative of < p2 > will derived. To derive d < p 2 >,

one multiplies Equation 27 by 2p, notes that 2p&= -
2, and gets

P = -1p 2 ji -,2pIIo. (28)

Integrating this over the range of all three arguments of H1 and noting the definition of expec-

tation, it is found:

't<p2 >= -2pi<p > -2/2 pll, dp d( d-q. (29)

The second term on the right hand side can be expanded as follows:

I 01 pHp dp d( aiq f J f [(pII)p-l11] pddi

*-1 "+-f rPuI]_ = -1. (30)

This last step is possible because the existence of < p > guarantees that pH1 -* 0 as p -± -oo.

Equation 29 becomes:

d 2 (p23-t <P >= -2< >+2p2 . (31)

The time derivatives of the other second order moments are similarly obtained:

0d
Tt < 2>=2 Cý= 2 C7 (32)

d 2j<i > = 2<ij/>=-2<(j/>

-2- < C2 > +4 < ip > -2a < C3-q > (33)

d
S=



_ < 172 > +2 < Cp > -a < C4 > (34)

d p2 -2<p 2 >-2/ 2  
(35)

d < > = -(6< )>-2 P>3
* d

d= -<p>-<tp> C<C3p>(3)
T < 0lp > < 'p > -- y < i/p > +2 (37)
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3 Results and figures

Figures 1, 3 and 5 show the results of the expansion for a = 0.1, -y = 1.0, and different values

of the correlation time, rc,: r, = 0.001, r, = 0.01, rc = 0.1, T, = 1.0, re = 10.0. Figures 2, 4

and 6 show the results of Monte Carlo experiments for similar cases.

As in the previous paper, there is very good agreement between the two methods with

similar differences as well. The analytical methods consistently give results slightly greater

magnitude than do the Monte Carlo experiments. This phenomenon was seen in the previous

paper. The analytical results are also consistently smoother, showing none of the small time

scale fluctuations inherent in the Monte Carlo technique.

It can be seen in all the curves that the traces representing r,- = 0.001 and r, = 0.01 are

almost identical. In some cases, most notably Figures 1 and 3, the two traces are almost

indistinguishable. The difference between the traces representing rc = 0.001 and r, = 0.01

are slightly more pronounced in the Monte Carlo results. However, the difference between the

r,, = 0.001 and rc = 0.01 traces of the Monte Carlo results is only of the order of the small

time scale fluctuations inherent in the Monte Carlo technique. These figures indicate that for

Tr, of order 0(0.01) or less, the noise can be assumed to be uncorrelated, or white. The traces

representing the response for -r, = 0.1 differ noticeably from those representing the results for

T'0 < 0.1. However, even for r, = 0.1, the results are still quite dose to those for -r < 0.1 and

the white noise approximation may still be useful for some uses. One would expect the effects

of the correlated nature of the noise to become significant at about T, = 0.1: at r, = 0.1, the

correlation time begins to become comparable to the natural period of the oscillator, which

is about one second. The correlated nature of the noise appears as an effect of time scale,

T, on the time history of the correlated noise. If the time scale of the correlation is much

* 11



smaller than the natural period of the oscillator, then the oscillator cannot respond to this

effect. However, as r. approaches the natural period of the oscillator, the oscillator can be,

and is, affected.

It can likewise be seen that as the correlation time of the noise becomes much greater

than the natural period of the oscillator, the magnitude of the random response approaches

zero. This is because when the correlation time is much larger than the natural period of the

oscillator, the oscillator responds to the noise as if it were deterministic. Hence the figures

show little random response for r, = 1.0 seconds and almost none at all for r. = 10.0 seconds.
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4 Conclusions

The overwhelming similarity between the results given by the two methods implies that this

adaptation of the van Kampen expansion is an accurate tool for predicting the statistics of the

response of an oscillator excited by colored noise. However, it was also seen that, depending

on the magnitude of the correlation time, perhaps as compared to the natural period of the

oscillator, simplifying assumtions can be made that obviate the need for this adaptation.

16



5 Acknowledgments

This work is prepared in partial fulfillment of the requirements for the degree of Doctor of

Philosophy of the first author. The work was performed under the support of the Federal

Aviation Administration Technical Center. The authors would like to thank Lawrence Neri of

the Technical Center for his interest and support, Harry Kemp, also of the Technical Center for

his support and expertise, and also the Department of Mechanical and Aerospace Engineering

at Rutgers, the State University of New Jersey. The second author would also like to thank

the Office of Naval Research and scientific officer Thomas F. Swean for support under grant

number N00014-93-1-0763.

17



References

[1] R. Rodriguez and N.G. van Kampen. Systematic treatment of fluctuations in a nonlinear

oscillator. Physica, 1976.

[2] Edward Weinstein and H. Benaroya. The van Kampen expansion for the Fokker-Planck

equation of a Duffing oscillator. Journal of Statistical Physics. Submitted.

[3] H. Gang. Two-dimensional probability distribution of systems driven by colored noise.

Physical Review, 43(2), Jan 1991.

[4] K.Y.R. Binlah and M. Shinozuka. Numerical method for colored noise generation and its

application to a bistable system. Physical Review, 12(42), Dec 1990.

18



The van Kampen expansion for a linked Duffing-linear
oscillator excited by colored noise

E. M. Weinstein*and H. Benaroyat

June 17, 1994

Abstract

In Rodrguez and Van Kampen's 1976 paper [1], a method of extracting information from
the Fokker-Planck equation without having to solve the equation is outlined. The Fokker-
Planck equation for a Dulflg oscillator excited by white noise is expanded about the intensity
of the forcing function, a. In Weinstein and Benaroya [2], the effect of the order of expansion
is investigated by carrying the expansion to a higher order. The effects of varying the system
parameters is also investigated. All results are verified by comparison to Monte Carlo experi-
ments. In Weinstein and Benaroya [3) the van Kampen expansion is modified and applied to
the case of a Duifng oscillator excited by colored noise. The effect of the correlation time is
investigated. Again the results are compared to those of Monte Carlo experiments. In both
cases, the results of the analyses agreed closely with those of the Monte Carlo experiments.
In this paper the van Kampen expansion is applied to linked linear-Duifmg oscillators. Again,
parametric studies are done on the system parameters and the correlation coeflicient of the
driving force and the results compared to those of Monte Carlo experiments. It was found
that the analytical results compared closely with the numerical results as long as the initial
assumptions of the expansion are not violated.

1 Introduction

The Fokker-Planck equation has proven to be a useful tool in the analysis of simple nonlinear
oscillators excited by stochastic processes. As a partial differential equation for the probability

density function of the response, its solution completely defines the solution of the problem.

It can be used to analyze both a single oscillator of the form

mi + 7 (.+, x)i + k(i•,x)z = Y(t), (1)

or a system of multiple, linked, oscillators of the form

Mg + r(:, )j + K(*, z)z = •(t). (2)
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In many cases, a physical system can be approximated by such a system of nonlinear
oscillators. The systems so modeled can range from a Brownian particle to structures excited
by von Karmann vortex shedding. Such modeling can be useful for gaining insight into a
problem and the way in which the system will behave as certain parameters are varied.

Once one has decided on the system of oscillators to be used to represent the physical
system, the derivation of the Fokker-Planck equation is relatively straightforward, although
tedious. The problem of how to solve it for the probability distribution of the response remains.

In a very few cases, the Fokker-Planck equation can be solved analytically, but in most cases
no analytical solution exists and one usually must resort to a numerical solution. However,
this can be computationally intensive and gives little insight into the larger problem.

In their 1976 paper, Rodriguez and van Kampen outline a method of dealing with the case
of an oscillator excited by weak Gaussian white noise. The Fokker-Planck equation of the
system is expanded about the intensity, a, of the driving function. This expansion is carried
to the order 0(ai). In this way the statistics of the fluctuations are obtained directly. This
method shows promise as a way to use the Fokker-Planck equation to gain useful information
about a wider variety of systems than was possible before.

This is the of a series of papers exploring the usefulness of this method. In this paper,
the van Kampen expansion is applied to coupled linear-Duffing oscillators. This is done for
two reasons. The first is to demonstrate that the expansion can be applied to a system
of coupled oscillators. The second is that some physical systems are well modeled by such
coupled oscillators. An example of such a system is an offshore structure under the influence
of ocean waves [4, 5]. These waves have a certain periodic nature, but are of random height
and intensity. The structure itself can be modelled as a series of oscillators.

There are several ways in which such coupled oscillators can be formulated. The external

force can drive either the linear or the Duffing oscillator. Here, it is decided to have the
external force drive the linear oscillator. The formulation of the solution would be the same
if the situation was reversed. There are also several ways in which the two oscillators can be

coupled: through a damping function, through a spring function, or through a combination of
the two. In this analysis, the coupling chosen is of the form of a simple linear spring. Here,

the system is formulated in such a way that the effect of the Duffing oscillator would not
feed back into the linear oscillator. Such a system would more accurately model a system
where the driving force is an overwhelming physical phenomenon impervious to the effect of

the structure being modeled. However, it appears that all of the above cases can be modeled
using the following technique.

2 Derivation and Expansion of the Fokker-Planck
equation

The first step in the derivation of the Fokker-Planck equation for any system is the formu-

lation of the governing equations. The governing equations for the system described in the

Introduction are:
11

y(t) + -Y(t) = 1F(t) (3)

i 1 (t) + -1iic(t) + zl(t) = y(t) (4)

12(t) + 72i 2(t) + z2(t) + -() k [zi(t) - z2 (t)], (5)

2



where F(t) is defined by

<F(t) > = 0,
< F(t)F(/) > = 2a6(t - t'). (6)

That the solution of Equation 3 is exponentially colored noise is shown in several sources such
as Billah and Shinozuka [6].

Because the Fokker-Planck equation requires that the governing equations be cast as a
series of first order differential equations, the following new variables are defined:

VI = i (7)

2 = - 2 - (8)

Using these variables the governing equations can be rewritten in the following, equivalent,
form:

i(t) = Y(t) + 1 F(t) (9)

3 Tc
'i(t)= V1(t) (10)
61 (t) =Y(t) - 701v(t) - ZI(t) (11)

62 (t) = V2 () (12)

2(t) = kzl(t) - 7 2 t 2(t) - (1 + k)X2(t) - ezX(t). (13)

The Fokker-Planck equation of this system can be derived as:dd di~ -d

"d '(Yf)- vJ"d f- [(-v - x0)f] - v2 d f

d 3 +;2 d2
d1; [(kzi - 72t2 - (1 + k)x2 - exz)f] + a y2 f. (14)

As was shown in Weinstein and Benaroya [2], the response of the oscillator can be separated
into a deterministic component arising from the initial conditions, and a random component of
magnitude O(Vf-). However, by assuming the oscillator to be initially at rest, the deterministic
component can be shown to be equal to zero. Therefore, the following substitutions are made
into Equation 14:

yV = p (15)
Z = -- C, (16)
VI = Th (17)

X2 = C2 (18)

"V2 = V a (19)

f(Y, X1 , V, Z2, V2; t) = , I(P, (1,, C2,172; t). (20)

H1(p, 1, in 2, j; t) is the joint probability density of the transformed variables. The factor
a-• will be omitted from the definition of 11. If carried through the derivations, it would be
divided out at a later stage.
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The relationships between the partial derivatives of f and RI are easily obtained as:

Of =Oia (21)8Ya- a-;
Of = 01l (22)t• oi - 094

Of = on (23)

f L11 (24)

2L = '9 (25)
OV2  0-12
Of o(26)

Equations 15 to 19, as well as the equations above, Eqs 21 to 26, can be substituted into
the Fokker-Planck equation, Equation 14, yielding:

11, = p,(pnI),, - rn.- [(P - "vivri - G~n].1 - 1n

- [(k(I - 72112 - (1 + k)( 2 - E-ca/)1ITj, + p2/,.,. (27)

The left hand side of Equation 27 is transformed into partial derivatives of 1I in the trans-
formed variables, p, (1, rh, C2, W, yielding

AnIIP - CnIG - ih]14, - 6C,2 - •n2, =

- [(k4 - 72'92 - (1 + k)C2 - eaiR)n] ' + ps[2n ,,.
(28)

One can now substitute the definitions of p, 41, m (2, and 7tj into Equations 10 to 13 and
multiply by a-1. The resulting four equations are:

ýI = ,• (29)

i = P-7'1rh-G (30)

6 = q2 (31)
k = k -7Y2n2-(1+ k)C2 -eaC2. (32)

If one multiplies each of the above equations by 1H and differentiates Equation 29 with
respect to 1, Equation 30 with respect to '1, Equation 31 with respect to C2, and Equation 32
with respect to n, each of the resulting equations can be added to the transformed Fokker-
Planck equation, Equation 28. The resultant is the following equation:

.-1 [PRI + p* (33)

This can be integrated with respect to p to give

-011 = •pll + ,211 P. (34)
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Thus, the Fokker-Planck equation of the system of linked oscillators has been transformed
to the following five equations:

All = -AppII + p 2I1, (35)

lII = MII (36)

in = (p-7171 -i )h1 (37)

211 = n211 (38)

112H = [k(1 - 7212 - (1 + k)( 2 - e3] 11. (39)

As shown in Weinstein and Benaroya [2], the time derivatives of the second order moments
can be found as

d 2 < (h> (40)

d <2%> = -27112 >-2<Cith>+2< hp> (41)

d

d (3
<¢>= 2<(¢?2> (3

d < CI2> = < C2 >+<<12> (44)Tt 1 (42)

S< ¢ >= -<C1C2>-7l<tii2>+<11?1>+<(2ap> (5

d < 22> = 2 <(2q 2 (2> (43)

d
d<hC> = k < CI2 > -(1+) < hC2 >*- < 2 >+<(2> (47)

dt d -- = 2k < + k)< 2% >-P2 > (48)d < (1% > = -1+k ) < C2 > -1+ k < C1•2 > +-r < Cli > +7 < Y•2• > (47)

d

tT < ri > = k2<p 2 >_<h > - (1 + k ) < 2 > - (50)

d

d < p2> = -2A ><Ci,>-2p2 (52)
dd~ < GP > = -A<Cip >-(+ )< hP.> -7+) p . (51)d (53)
d < 2P > = -A <C2P >+ < n2P> (3

d

The previous 15 equations, Equations 40 to 54, can be cast as a single matrix equation,

d = Ai+, (55)
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where

<*C?> 0
* 1712 > 0

< C,> 0

<CIC2> 0< '12 > 0

"<i?2> 0

£= < Ci,•> , 0 o (56)
"<7th1C2> 0

< (21 > 0f72p< Cl 2 > b= 0(56

< V2> 0
< r/M > 0
< c'2,0> 0
< hp > 0

< 172P > 0

and

0 0 2 0 0 0 0 0
0 - 2 -yi -2 0 0 0 0 0

-1 1 -7t 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 -1 -71 0 0
0 0 0 0 0 0 -272 2k

k 0 0 0 -1-k 0 0 -72

0 0 k 0 0 -1 -k 0 -1
0 0 0 -1 - k k 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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Figure 1: Response of coupled oscillators, Y11 = 1.0, 72 = 1.0, T. = 0.01, k = 1.0, calculated
analytically.
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Figure 1 (Continued): Response of coupled oscillators, 71 = 1.0, 72 = 1.0, Tc = 0.01, k = 1.0,

calculated analytically.
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0 0 0 0 2 0 0
0 0 0 1 0 0 0
0 2 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 1 0
0 -2 - 2k 0 0 0 0 0
1 0 0 0 0 0 0

-71-72 0 0 0 0 0 1
0 -72 0 0 0 0 0
0 0 -214 0 0 0 0
0 0 0 -1A 1 0 0
0 0 1 -1 - - -71  0 0
0 0 0 0 0 -/. 1
0 0 0 k 0 -1-k -p-'72

Equation 55 can be solved by standard techniques to yield all the time evolving second
order moments of the system.

3 Results and Figures
Figure 1 shows the result of the analysis for the case of 71 = 1.0, 7f2 = 1.0, T0 = 0.01, and
coupling spring constant k = 1.0. Figure 2 shows the Monte Carlo results for the same system.

Agreement between the two sets of results is generally very good with no major points
of difference. In general, the analytical results show slightly deemphasized local maxima and
minima as compared to the Monte Carlo results. This effect is most pronounced in the cross
correlation curves, such as < q1h >, Figures l(c,e,fj) and 2(c,e,fj) that have a local maximum
at about 5 seconds. Comparison of Figures 1(c), and 2(c) shows this effect most clearly. It
is also seen that, in general, the steady state values of the Monte Carlo results are somewhat
lower than those of the analytical results. This is consistent with the results of the previous
two papers [2, 31.

Four studies on the effects of varying the several parameters, while keeping all others
constant, are performed: 1) 7- is varied from 0.7 to 10, 2) 712 is varied from 0.7 to 10.0, 3)
k, the constant of the coupling spring, is varied from 0.1 to 10.0, and 4) r, is increased from
0.001 to 10.0.

The results of the first of these studies are shown in Figures 3 and 4. The results are as
would be expected from [2, 3]. The responses of the linear oscillator do not change shape
significantly with changing values of yi; however, the magnitude does decrease with increasing
values of yl. This is a direct result of the physics of the problem: increased damping of an
oscillator should decrease the excursions. The decrease in the magnitude of the response of
the Dulling oscillator is a direct result of the decreased magnitude of the response of the linear
oscillator. The Dufling oscillator is excited by the displacement of the linear oscillator; it is
reasonable that a decrease in the magnitude of the displacement of the linear oscillator will be
reflected in a decrease in the response of the Duffing oscillator. The agreement between the
analytical and numerical data is good. The analytical data show slightly deemphasized local
maxima and minima, although the difference is not marked. The largest difference is seen in
Figures 3(j) and 40). Comparison of these two figures shows the Monte Carlo traces becoming
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Figure 2: Response of coupled oscillators, "yf = 1.0, -'2 = 1.0, r, = 0.01, k = 1.0, calculated via a
Monte Carlo experiment.
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negative at five and ten seconds while the analytical traces merely reach local minima of about
zero.

The results of the study of the effect of varying 72 is shown in Figures 5 and 6. These figures
show no change in the response of the linear oscillator with changing 72. This is because, while
the Duffing oscillator is excited by the displacement of the linear oscillator, the linear oscillator
is independent of the Duffing oscillator; i.e., neither X2 nor v2 appear in the equations of motior
of the linear oscillator. Therefore, one would not expect any variation of the Duffing oscillator
to affect the linear oscillator. However, the effect on the Duffing oscillator of varying 7Y2 is
quite pronounced and similar to the effect on the linear oscillator of varying 71. All response
curves of the Dufling oscillator decrease in magnitude as 72 increases. This is for the reasons
stated above. Comparison of the Figures 5 and 6 shows the same similarities and contrasts as
for the 7y1 study.

Figures 7 and 8 show the results of varying the spring constant, k, of the coupling spring.
Again it is seen that varying the nature of the coupling has no effect on the linear oscillator:
there is no change in the moments of the linear oscillator, < C2 >, < CIth >, and < i?2 >. The
moments of the Duffing oscillator, < C2 >, < (2V >, and < 2 >, do increase with increasing
values of k. This is again because the driving force of the Duffing oscillator is k(CI - C2).
Therefore, the larger values of k will lead to larger values of the forcing function, and so larger
values of the moments. The cross correlations, < YhC2 > < 1112 >, Figures 7(fh) and 8(fh)
show a change in the phase angle between the two oscillators. Looking at the progression of
traces as k is varied shows markedly different results than any other presented in this chapter.
In all other figures presented, as a parameter is varied, the curves change monotonically in
magnitude, but do not change significantly in shape. In these figures, the trace corresponding
to k = 10.0, the largest value of the parameter, has the median value. Also, the traces
corresponding to the two lowest values of the parameter, k = 0.1 and k = 0.3, do not show
any discernible local maxima in the first 2.5 seconds; they increase monotonically from zero to
their maxima. The other three traces show increasing local maxima with the local maximum
of the k = 10.0 trace of roughly three times as great as the steady state value. The decrease
in the magnitude of these traces, after each reaches its local maximum, represents a shift in
the phase angle between the two oscillators. Comparison of the two methods of solution once
again shows very good agreement with the same qualitative differences discussed above.

Figures 9 and 10 show the effects on the response of the oscillators of varying the correlation
time of the noise. As in the previous papers, it is seen that there is negligible effect in varying
Tc from 0.001 to 0.01, and very small effect in changing i-, to 0.1. For this oscillator, noise of
correlation time rc < 0.01 can be considered as white without any loss of information. For
many systems, the white noise approximation is acceptable for the case of colored noise with
correlation time T- = 0.1. As in the other studies, the agreement between the analytical and
experimental results was quite good.
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Figure 2 (Continued): Response of coupled oscillators, 71 = 1.0, 72 = 1.0, rc = 0.01, k = 1.0,

calculated via a Monte Carlo experiment.
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Figure 10 (Continued): Effect of varying T0 on the response of coupled oscillators, 7/i = 1.0, 7Y2 = 1.0,
k = 1.0, calculated via a Monte Carlo experiment.
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4 Conclusions

The overwhelming similarity between the results given by the two methods implies that
this adaptation of the van Kampen expansion is an accurate tool for predicting the
statistics of the response of a coupled Duffing-linear oscillator excited by colored noise.
Although not directly shown here, it seems reasonable to assume that this method would
give good results for an arbitrary combination of linear and Duffing oscillators. it was
also seen that, depending on the magnitude of the correlation time as compared to the
natural period of the oscillator, simplifying assumptions can be made that obviate the
need for this adaptation.
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